高级检索

3D打印聚乳酸/纳米级β-磷酸钙可吸收山羊颈椎融合器的生物相容性及生物力学评价

  • 摘要: 目的:探讨3D打印聚乳酸(polylactic acid,PLA)/纳米级β-磷酸钙(β-TCP)可吸收颈椎融合器的生物相容性及生物力学性能。方法:通过计算机辅助设计(computer-assisted design,CAD)系统和3D打印仪制备个性化山羊颈椎融合器,分析评价其终板匹配性;通过体外细胞实验检测3D打印融合器的生物相容性;将3D打印融合器植入山羊颈椎,分析其生物力学稳定性。结果:3D打印融合器的终板匹配性能明显高于自体髂骨、美敦力威高融合器和史赛克Solis融合器,差异有统计学意义(P<0.05)。纯PLA材料与3D打印复合材料对细胞活力的影响差异无统计学意义。3D打印复合材料融合器左右侧屈和旋转活动度均小于自体髂骨、美敦力威高融合器和史赛克融合器,差异有统计学意义(P<0.05)。3D打印复合材料前屈活动度小于自体髂骨(P<0.05),但与美敦力威高融合器、史赛克融合器差异无统计学意义;3D打印复合材料后伸活动度与对照组差异无统计学意义。结论:3D打印PLA/纳米级β-TCP可吸收颈椎融合器具有较好的生物相容性和力学稳定性,具有良好的应用前景

     

    Abstract: Objective:To discuss the biocompatibility and biomechanics properties of novel 3D printed polylactic acid (PLA)/nano-scale β-TCP degradable cervical fusion cage. Methods:The computer-assisted design (CAD) system and 3D printer were used to design and fabricate the personalized goat cervical fusion device and the endplate matching was evaluated and analyzed. The biocompatibility of 3D printed fusion device was tested by cell experiment. The biomechanical stability of 3D printed cage was analyzed after being implanted into the goat cervical spine. Results:The matching degree of 3D printed cage was significantly higher than that of autologous bone, Wego cage, and Solis cage (P<0.05). The differences were statistically significant (P<0.05). There was no significant difference in cell viability between pure PLA materials and 3D-printed PLA/nano-β-TCP composites. On the left and right sides of the flexion and rotation of the ROM, 3D printed composite fusion device were less than the autologous iliac, Wego cage, and Solis cage, the differences were statistically significant (P<0.05). In the flexion ROM, although the 3D printed fusion device was less than the autogenous iliac bone (P<0.05), but there was no significant difference with the Wego cage, and Solis cage. In the posterior ROM, there was no significantly difference between 3D printed fusion device and autologous iliac, Wego cage, or Solis cage. Conclusions:The 3D printed PLA/nano-scale β-TCP degradable cervical fusion device showed good biocompatibility and mechanical stability, which indicating a promising clinical application prospect.

     

/

返回文章
返回