高级检索

人工智能辅助压缩感知三维液体衰减反转恢复序列在静脉内耳钆造影中的应用

刘锴, 王建, 蒋怀礼, 张澍杰, 吴迪, 黄新生, 曾蒙苏, 赵梦龙

刘 锴,王 建,蒋怀礼,等. 人工智能辅助压缩感知三维液体衰减反转恢复序列在静脉内耳钆造影中的应用[J]. 中国临床医学, 2025, 32(2): 212-217. DOI: 10.12025/j.issn.1008-6358.2025.20250063
引用本文: 刘 锴,王 建,蒋怀礼,等. 人工智能辅助压缩感知三维液体衰减反转恢复序列在静脉内耳钆造影中的应用[J]. 中国临床医学, 2025, 32(2): 212-217. DOI: 10.12025/j.issn.1008-6358.2025.20250063
LIU K, WANG J, JIANG H L, et al. Application of three-dimensional fluid-attenuated inversion recovery sequence using artificial intelligence-assisted compressed sensing technique in intravenous gadolinium contrast-enhanced magnetic resonance imaging of inner ear[J]. Chin J Clin Med, 2025, 32(2): 212-217. DOI: 10.12025/j.issn.1008-6358.2025.20250063
Citation: LIU K, WANG J, JIANG H L, et al. Application of three-dimensional fluid-attenuated inversion recovery sequence using artificial intelligence-assisted compressed sensing technique in intravenous gadolinium contrast-enhanced magnetic resonance imaging of inner ear[J]. Chin J Clin Med, 2025, 32(2): 212-217. DOI: 10.12025/j.issn.1008-6358.2025.20250063

人工智能辅助压缩感知三维液体衰减反转恢复序列在静脉内耳钆造影中的应用

详细信息
    作者简介:

    刘 锴,副主任技师. E-mail:liu.kai@zs-hospital.sh.cn

    通讯作者:

    赵梦龙: Tel: 021-64041990,E-mail:zhaomenglong8956@163.com

  • 中图分类号: R 764.33

Application of three-dimensional fluid-attenuated inversion recovery sequence using artificial intelligence-assisted compressed sensing technique in intravenous gadolinium contrast-enhanced magnetic resonance imaging of inner ear

  • 摘要:
    目的 

    探讨人工智能辅助压缩感知(artificial intelligence-assisted compressed sensing, ACS)技术应用于静脉内耳钆造影三维液体衰减反转恢复(three-dimensional fluid-attenuated inversion recovery, 3D-FLAIR)序列检查的价值。

    方法 

    前瞻性纳入2024年1月至11月在复旦大学附属中山医院接受静脉内耳钆造影ACS 和联合压缩感知(united compressed sensing, uCS) 3D-FLAIR序列(超长重复时间16 000 ms,扫描时间分别为6 min 40 s、10 min 24 s)检查的患者。由两位影像医师独立通过两序列图像评价患者内淋巴积水情况。对比两序列的图像质量主观评分,信噪比(signal-to-noise ratio, SNR)、对比噪声比(contrast-to-noise ratio, CNR)。分析两序列及评价者间评级结果一致性。

    结果 

    两种序列图像质量主观评分差异无统计学意义。ACS 3D-FLAIR的SNR和CNR高于uCS 3D-FLAIR(P<0.001)。两序列耳蜗、前庭内淋巴积水分级的kappa值分别为0.942、0.888(P<0.001)。两名影像医师使用ACS 3D-FLAIR对耳蜗和前庭内淋巴积水分级的kappa值分别为0.784和0.831(P<0.001),使用uCS 3D-FLAIR对耳蜗和前庭内淋巴积水分级的kappa值分别为0.725和0.756(P<0.001)。

    结论 

    ACS 3D-FLAIR较uCS 3D-FLAIR可在更短的扫描时间内获得更高的SNR和CNR,更适用于静脉内耳钆造影检查;使用ACS 3D-FLAIR对内淋巴积水分级结果与使用uCS 3D-FLAIR相似。

    Abstract:
    Objective 

    To investigate the value of artificial intelligence-assisted compressed sensing (ACS) technology for intravenous gadolinium contrast-enhanced magnetic resonance imaging of the inner ear using three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) sequence.

    Methods 

    The patients received gadolinium contrast-enhanced magnetic resonance imaging using ACS and united compressed sensing (uCS) 3D-FLAIR at Zhongshan Hospital, Fudan University from January to November 2024 were prospectively enrolled. The repetition time was 16 000 ms, and acquisition time was 6 min 40 s and 10 min 24 s in ACS 3D-FLAIR and uCS 3D-FLAIR, respectively. The images on the two sequences were evaluated independently by two radiologists. The image quality of the two sequences was subjectively evaluated and compared. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were compared between the two sequences. The grading consistencies using two sequences and between the two doctors were analyzed.

    Results 

    There was no statistically difference in subjective score of image quality between the two sequences. SNR and CNR of the ACS 3D-FLAIR sequence were significantly higher than those of the uCS 3D-FLAIR sequence (P<0.001). The kappa values of grades of cochlear and vestibular endolymphatic hydrops were 0.942 and 0.888 using two sequences (P<0.001). The kappa values of grades of cochlear and vestibular endolymphatic hydrops using the ACS 3D-FLAIR sequence between the two doctors were 0.784 and 0.831, respectively (P<0.001); the kappa values of grades of cochlear and vestibular endolymphatic hydrops using uCS 3D-FLAIR sequence between the two doctors were 0.725 and 0.756, respectively (P<0.001).

    Conclusions 

    ACS 3D-FLAIR could provide higher SNR and CNR than uCS 3D-FLAIR, and is more suitable for intravenous gadolinium contrast-enhanced magnetic resonance imaging of the inner ear; the endolymphatic hydrops grades using ACS 3D-FLAIR is similar to use uCS 3D-FLAIR.

  • MRI静脉内耳钆造影目前已成为一种直观、准确显示内淋巴积水的检查手段,对积水性内耳病的临床诊治具有重要价值[1]。由于内耳结构微小,MRI内耳钆造影检查序列需具有高分辨率和内、外淋巴间隙高对比度的条件。3D-FLAIR序列最早应用于内淋巴积水诊断。其扫描时间相对较短,对外淋巴间隙的低浓度钆对比剂较为敏感,应用于内耳钆造影时成功率高。但是,该序列用于单倍剂量静脉内耳钆造影时,在部分患者中仍存在对外淋巴间隙的低浓度钆对比剂敏感性不足的问题[2]。反转恢复序列对低浓度钆对比剂的敏感性随着重复时间(repetition time, TR)的延长而增强[3-4]。使用超长TR的内耳钆造影检查序列能获得更高的信噪比(signal-to-noise ratio, SNR)和对比噪声比(contrast-to-noise ratio, CNR),从而提高图像质量[5-6]

    但是延长TR会相应延长扫描时间,从而增加运动伪影,降低检查成功率。改良三维快速自旋回波序列能提高内、外淋巴间隙对比度,同时能通过超长回波链在保证图像质量的基础上缩短扫描时间[7]。人工智能辅助压缩感知(artificial intelligence-assisted compressed sensing, ACS)是将人工智能(artificial intelligence, AI)和并行成像(parallel imaging, PI)、半傅里叶成像(half Fourier imaging, HF)、压缩感知(compressed sensing, CS)相结合的一种新型加速成像技术。该技术通过对大量先验知识进行深度学习,能抑制传统加速技术在高加速因子条件下产生的各种重建伪影,并减少采集端对K空间数据的要求,能在不影响解剖和病理结构显示的基础上明显加快扫描速度[8-9]

    本研究拟采用基于调制反转角成像(modulated flip angle technique in refocused imaging with extended echo train, MATRIX)序列(一种改良三维快速自旋回波序列)的超长TR 3D-FLAIR序列进行单倍剂量静脉内耳钆造影检查,并通过对比该序列分别使用ACS技术和联合压缩感知(united compressed sensing, uCS)加速技术后的成像效果,探讨ACS技术用于静脉内耳钆造影3D-FLAIR检查的价值。

    前瞻性纳入2024年1月至11月在复旦大学附属中山医院接受静脉内耳钆造影ACS和 uCS 3D-FLAIR(超长TR)序列检查的患者。患者参照2015年Barany学会标准[10]诊断为确定的梅尼埃病、可能的梅尼埃病或临床诊断存疑的耳源性眩晕。患者主要症状包括眩晕、听力下降、耳鸣和耳闷等。排除有中耳乳突炎病史、内耳手术史的患者。剔除扫描过程中有运动伪影的患者。纳入56例患者,女性33例、男性23例,年龄23~74岁,平均(50.6±13.8)岁。

    患者静脉注射单倍剂量(0.1 mmol/kg)的钆布醇注射液(加乐显,拜耳),注射后4~6 h进行内耳MRI扫描。使用3.0 T MRI扫描仪(uMR 880,上海联影医疗科技有限公司)和64通道头线圈进行扫描。扫描序列包括ACS 3D-FLAIR和uCS 3D-FLAIR,范围包括双侧内耳,两序列的扫描定位一致、层面互相匹配,除采用的加速技术不同外,其他参数均一致。主要参数:TR 16 000 ms、回波时间(echo time, TE) 475.8 ms、反转时间(inversion time, TI) 3 000 ms、层厚0.67 mm、矩阵288×320、视野(field of view,FOV )180 mm×200 mm、恒定翻转角120°、回波链长度160。ACS 3D-FLAIR扫描时间为6 min 40 s,uCS 3D-FLAIR扫描时间为10 min 24 s。

    使用联影后处理工作站(uWS,上海联影医疗科技有限公司)进行图像处理和分析。两名影像医师分别对ACS 3D-FLAIR和uCS 3D-FLAIR图像质量从0~5进行评分:0分,伪影大,图像模糊,或内、外淋巴间隙之间对比度低、难以分辨,难以满足诊断需求;1~4分伪影逐渐减小,内、外淋巴间隙对比度逐渐增大;5分,图像清晰、无伪影,且能清楚分辨内、外淋巴间隙[11]。两位影像医师的评分不一致时,通过讨论达成一致。

    测量并计算两序列扫描图像的SNR和CNR。在uCS 3D-FLAIR上,选择显示耳蜗底周的层面,在其外淋巴区域(高信号区)作面积为3~5 mm2的椭圆形感兴趣区(region of interest, ROI),并复制到相应层面的ACS 3D-FLAIR序列上,软件自动匹配于该序列上的相同位置(图1)。在两序列图像上前庭内淋巴间隙区域(低信号区)选取约5 mm2的ROI,并在同层脑干选取30~50 mm2的ROI。后处理工作站自动产生ROI的平均信号强度(SI)和信号强度标准差(σ)。SNR=SI耳蜗底周/σ脑干,CNR=(SI耳蜗底周-SI前庭)/σ脑干

    图  1  外淋巴间隙信号强度和脑干信号强度标准差的测量示意图
    Figure  1.  Illustration of perilymphatic signal intensity and standard deviation of signal intensity in the brainstem
    On the uCS 3D-FLAIR image (A), a 3-5 mm2 green oval region of interest (ROI) is drawn in the hyperintense region of cochlea basal turn and copied to the corresponding level of ACS 3D-FLAIR image (B, blue oval). The workstation automatically matches the identical position. 30-50 mm2 ROIs on the same level of brainstem are also placed in the same method (circles).

    两名影像医师独立在两序列图像上对患耳进行内淋巴积水分级,评价过程中对患者性别、年龄、症状及诊断不知情。评价参考Nakashima等[12]提出的标准,将耳蜗和前庭内淋巴积水分为正常、轻度和重度。采用两名影像医师对两序列协商一致的分级结果。

    采用SPSS 16.0软件进行数据处理。应用配对Wilcoxon秩和检验比较两种序列的图像质量主观评分。应用配对t检验比较两种序列的SNR和CNR。应用kappa一致性检验分析两种序列和评价者间一致性:kappa值为0.00~0.19,一致性差;0.20~0.39,一致性一般;0.40~0.59,一致性中等;0.60~0.79,一致性较高;0.80~1.00,一致性高。应用McNemar检验比较使用两种序列对耳蜗、前庭内淋巴积水的评价结果。检验水准(α)为0.05。

    两序列的图像质量均满足诊断需求(图24)。结果(表1)显示:uCS 3D-FLAIR序列的图像质量主观评分略高于ACS 3D-FLAIR序列,但差异无统计学意义。ACS 3D-FLAIR的SNR及CNR均高于uCS 3D-FLAIR序列(P<0.001)。

    图  2  正常内耳的3D-FLAIR表现
    Figure  2.  3D-FLAIR appearance of a normal inner ear
    The signal characteristics of a normal left inner ear on uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images are almost identical: there is no dilatation of left scala media, and the area ratio of left vestibular endolymphatic space to entire vestibule is less than 1/3.
    图  3  右侧耳蜗、前庭轻度内淋巴积水3D-FLAIR表现
    Figure  3.  3D-FLAIR appearance of mild endolymphatic hydrops in the right cochlea and vestibule
    Mild endolymphatic hydrops in the right cochlea and vestibule is shown on both uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images: slight dilated scala media of right cochlea is displayed, but the area of scala media is smaller than that of the scala vestibuli (short arrows); the area ratio of the right vestibular endolymphatic space to the entire vestibule is between 1/3 and 1/2 (long arrow).
    图  4  左侧耳蜗、前庭重度内淋巴积水3D-FLAIR表现
    Figure  4.  3D-FLAIR appearance of severe endolymphatic hydrops in the left cochlea and vestibule
    Severe endolymphatic hydrops in the left cochlea and vestibule is shown on both uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images: the dilated scala media of the left cochlea is obvious, and the area of scala media is larger than that of the scala vestibuli (short arrows); the left vestibular endolymphatic space is significantly dilated, and its area ratio to the entire vestibule is greater than 1/2 (long arrow).
    表  1  图像质量的主观评价和定量分析
    Table  1.  Subjective and quantitative analyses of image quality
     Index n uCS 3D-FLAIR ACS 3D-FLAIR P
    Subjective score 56 4.14±0.44 4.02±0.56 0.09
    CNR 112 33.25±12.64 44.33±18.97 <0.001
    SNR 112 42.74±10.13 52.60±17.93 <0.001
      SNR: signal-to-noise ratio; CNR: contrast-to-noise ratio.
    下载: 导出CSV 
    | 显示表格

    结果(表2)显示:使用两序列对耳蜗和前庭内淋巴积水分级的一致性均高(kappa值分别为0.942和0.888,P<0.001);使用两序列对耳蜗、前庭内淋巴积水的分级结果差异均无统计学意义(χ2 =3.000、2.667, P=0.083、0.102)。两位影像医师使用ACS 3D-FLAIR对耳蜗内淋巴积水分级的一致性较高(kappa值为0.784,P<0.001),对前庭内淋巴积水分级的一致性高(kappa值为0.831,P<0.001);使用uCS 3D-FLAIR对耳蜗和前庭内淋巴积水分级的一致性均较高(kappa值分别为0.725、0.756,P<0.001)。

    表  2  采用ACS 3D-FLAIR和uCS 3D-FLAIR对耳蜗和前庭内淋巴积水的分级结果
    Table  2.  Grading results of cochlear and vestibular endolymphatic hydrops using ACS 3D-FLAIR and uCS 3D-FLAIR
     ACS 3D-FLAIR uCS 3D-FLAIR (Cochlea) uCS 3D-FLAIR (Vestibule)
    Normal Mild Significant Total Normal Mild Significant Total
    Normal 79 0 0 79 77 0 0 77
    Mild 0 16 0 16 0 18 1 19
    Significant 0 3 14 17 0 5 11 16
    Total 79 19 14 112 77 23 12 112
    下载: 导出CSV 
    | 显示表格

    近期研究[6, 13-14]发现,长TR和恒定翻转角的3D-FLAIR序列用于静脉内耳钆造影效果更好。恒定翻转角3D-FLAIR采用16 000 ms的超长TR时,对外淋巴液中低浓度钆对比剂的敏感性明显高于采用10 000 ms的TR时,SNR和CNR分别提高32.4%和41.3%[6]。因此,本研究采用超长TR(16 000 ms)和恒定翻转角的3D-FLAIR进行单倍剂量静脉内耳钆造影检查。

    超长TR会明显延长3D-FLAIR的扫描时间,而ACS技术能提高扫描序列的时间分辨率。uCS技术是一种CS成像结合HF和PI技术,扫描速度快、图像质量高,成像效果已得到广泛验证[15-18],因此本研究将其作为对照。本研究中,ACS缩短了3D-FLAIR的扫描时间。设置与本研究相同扫描参数时,无加速技术的3D-FLAIR的扫描时间长达23 min 44 s;使用PI技术的3D-FLAIR的扫描时间是12 min 32 s;本研究中uCS 3D-FLAIR扫描时间是10 min 24 s,ACS 3D-FLAIR缩短为6 min 40 s。

    本研究中,两序列的图像质量主观评分差异无统计学意义。ACS技术对图像噪声有良好抑制作用,可改善常规PI加速带来的图像伪影,进而提高图像质量。本研究中ACS 3D-FLAIR的SNR和CNR均高于uCS 3D-FLAIR(P<0.001),提示ACS 3D-FLAIR更适用于内耳钆造影检查。尽管本研究中两序列的图像质量均满足诊断需求,但各种原因导致外淋巴液钆浓度低时,ACS 3D-FLAIR有助于提高检查成功率,降低误诊率。此外,使用两序列对耳蜗及前庭内淋巴积水评价的一致性高,评价结果差异无统计学意义,说明使用两序列对内淋巴积水的诊断效能相当。同时,两位影像医师使用两序列对耳蜗和前庭内淋巴积水评价的一致性较高或高。

    综上所述,ACS 3D-FLAIR内耳图像质量与uCS 3D-FLAIR序列相似,但在更短的扫描时间内能获得更高的SNR和CNR,表明其更适用于单倍剂量静脉内耳钆造影检查。由于无加速技术的3D-FLAIR扫描时间过长,本研究未将其纳入。此外,ACS 3D-FLAIR序列对参数、设备软硬件要求很高,且在不同厂商和机型上的表现尚需验证。

    伦理声明 本研究获得复旦大学附属中山医院伦理委员会审批(B2022-255R),所有受试者均知情同意。

    利益冲突 所有作者声明不存在利益冲突。

    作者贡献 刘锴:实施研究,资料收集,撰写论文;王建、吴迪:资料收集;蒋怀礼、张澍杰:实施研究;黄新生:指导研究;曾蒙苏:研究设计,指导研究;赵梦龙:研究设计,数据统计,修改论文。

  • 图  1   外淋巴间隙信号强度和脑干信号强度标准差的测量示意图

    Figure  1.   Illustration of perilymphatic signal intensity and standard deviation of signal intensity in the brainstem

    On the uCS 3D-FLAIR image (A), a 3-5 mm2 green oval region of interest (ROI) is drawn in the hyperintense region of cochlea basal turn and copied to the corresponding level of ACS 3D-FLAIR image (B, blue oval). The workstation automatically matches the identical position. 30-50 mm2 ROIs on the same level of brainstem are also placed in the same method (circles).

    图  2   正常内耳的3D-FLAIR表现

    Figure  2.   3D-FLAIR appearance of a normal inner ear

    The signal characteristics of a normal left inner ear on uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images are almost identical: there is no dilatation of left scala media, and the area ratio of left vestibular endolymphatic space to entire vestibule is less than 1/3.

    图  3   右侧耳蜗、前庭轻度内淋巴积水3D-FLAIR表现

    Figure  3.   3D-FLAIR appearance of mild endolymphatic hydrops in the right cochlea and vestibule

    Mild endolymphatic hydrops in the right cochlea and vestibule is shown on both uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images: slight dilated scala media of right cochlea is displayed, but the area of scala media is smaller than that of the scala vestibuli (short arrows); the area ratio of the right vestibular endolymphatic space to the entire vestibule is between 1/3 and 1/2 (long arrow).

    图  4   左侧耳蜗、前庭重度内淋巴积水3D-FLAIR表现

    Figure  4.   3D-FLAIR appearance of severe endolymphatic hydrops in the left cochlea and vestibule

    Severe endolymphatic hydrops in the left cochlea and vestibule is shown on both uCS 3D-FLAIR (A) and ACS 3D-FLAIR (B) images: the dilated scala media of the left cochlea is obvious, and the area of scala media is larger than that of the scala vestibuli (short arrows); the left vestibular endolymphatic space is significantly dilated, and its area ratio to the entire vestibule is greater than 1/2 (long arrow).

    表  1   图像质量的主观评价和定量分析

    Table  1   Subjective and quantitative analyses of image quality

     Index n uCS 3D-FLAIR ACS 3D-FLAIR P
    Subjective score 56 4.14±0.44 4.02±0.56 0.09
    CNR 112 33.25±12.64 44.33±18.97 <0.001
    SNR 112 42.74±10.13 52.60±17.93 <0.001
      SNR: signal-to-noise ratio; CNR: contrast-to-noise ratio.
    下载: 导出CSV

    表  2   采用ACS 3D-FLAIR和uCS 3D-FLAIR对耳蜗和前庭内淋巴积水的分级结果

    Table  2   Grading results of cochlear and vestibular endolymphatic hydrops using ACS 3D-FLAIR and uCS 3D-FLAIR

     ACS 3D-FLAIR uCS 3D-FLAIR (Cochlea) uCS 3D-FLAIR (Vestibule)
    Normal Mild Significant Total Normal Mild Significant Total
    Normal 79 0 0 79 77 0 0 77
    Mild 0 16 0 16 0 18 1 19
    Significant 0 3 14 17 0 5 11 16
    Total 79 19 14 112 77 23 12 112
    下载: 导出CSV
  • [1] 中华耳鼻咽喉头颈外科杂志编辑委员会, 中华医学会耳鼻咽喉头颈外科学分会. 内耳内淋巴积水磁共振影像评估中国专家共识(2020)[J]. 中华耳鼻咽喉头颈外科杂志, 2020, 55(9): 809-813. DOI: 10.3760/cma.j.cn115330-20200327-00248

    Editorial Board of Chinese Journal of Otorhinolaryngology Head and Neck Surgery, Society of Otorhinolaryngology Head and Neck Surgery, Chinese Medical Association. The consensus of Chinese experts on evaluation of endolymphatic hydrops in the inner ear using MRI (2020)[J]. Chin J Otorhinolaryngol Head Neck Surg, 2020, 55(9): 809-813. DOI: 10.3760/cma.j.cn115330-20200327-00248

    [2]

    NAGANAWA S, NAKASHIMA T. Visualization of endolymphatic hydrops with MR imaging in patients with Ménière’s disease and related pathologies: current status of its methods and clinical significance[J]. Jpn J Radiol, 2014, 32(4): 191-204. DOI: 10.1007/s11604-014-0290-4

    [3]

    NAGANAWA S, KAWAI H, TAOKA T, et al. Improved hydrops: imaging of endolymphatic hydrops after intravenous administration of gadolinium[J]. Magn Reson Med Sci, 2017, 16(4): 357-361. DOI: 10.2463/mrms.tn.2016-0126

    [4]

    NAGANAWA S, KAWAI H, TAOKA T, et al. Improved 3D-real inversion recovery: a robust imaging technique for endolymphatic hydrops after intravenous administration of gadolinium[J]. Magn Reson Med Sci, 2019, 18(1): 105-108. DOI: 10.2463/mrms.bc.2017-0158

    [5]

    ZHAO M L, JIANG H L, ZHANG S J, et al. Comparison of an optimized 3D-real IR and a 3D-FLAIR with a constant flip angle in the evaluation of endolymphatic hydrops[J]. Eur J Radiol, 2023, 158: 110614. DOI: 10.1016/j.ejrad.2022.110614

    [6]

    OSMAN S, HAUTEFORT C, ATTYÉ A, et al. Increased signal intensity with delayed post contrast 3D-FLAIR MRI sequence using constant flip angle and long repetition time for inner ear evaluation[J]. Diagn Interv Imaging, 2022, 103(4): 225-229. DOI: 10.1016/j.diii.2021.10.003

    [7]

    NAGANAWA S, KAWAI H, SONE M, et al. Increased sensitivity to low concentration gadolinium contrast by optimized heavily T2-weighted 3D-FLAIR to visualize endolymphatic space[J]. Magn Reson Med Sci, 2010, 9(2): 73-80. DOI: 10.2463/mrms.9.73

    [8]

    OUCHI S, ITO S. Reconstruction of compressed-sensing MR imaging using deep residual learning in the image domain[J]. Magn Reson Med Sci, 2021, 20(2): 190-203. DOI: 10.2463/mrms.mp.2019-0139

    [9]

    SHENG R F, ZHENG L Y, JIN K P, et al. Single-breath-hold T2WI liver MRI with deep learning-based reconstruction: a clinical feasibility study in comparison to conventional multi-breath-hold T2WI liver MRI[J]. Magn Reson Imaging, 2021, 81: 75-81. DOI: 10.1016/j.mri.2021.06.014

    [10]

    LOPEZ-ESCAMEZ J A, CAREY J, CHUNG W H, et al. Diagnostic criteria for Menière’s disease[J]. J Vestib Res, 2015, 25(1): 1-7. DOI: 10.3233/VES-150549

    [11] 张澍杰, 蒋怀礼, 刘 壮, 等. 超长重复时间三维真实重建反转恢复序列静脉增强在梅尼埃病内淋巴积水成像中的初步应用[J]. 中华放射学杂志, 2023, 57(8): 878-883. DOI: 10.3760/cma.j.cn112149-20220822-00691

    ZHANG S J, JIANG H L, LIU Z, et al. A threedimensional inversion-recovery with real reconstruction sequence with an ultralong repetition time for endolymphatic hydrops of Meniere disease after intravenous enhancement: a preliminary application[J]. Chin J Radiol, 2023, 57(8): 878-883. DOI: 10.3760/cma.j.cn112149-20220822-00691

    [12]

    NAKASHIMA T, NAGANAWA S, PYYKKO I, et al. Grading of endolymphatic hydrops using magnetic resonance imaging[J]. Acta Otolaryngol Suppl, 2009, (560): 5-8.

    [13]

    NAHMANI S, VAUSSY A, HAUTEFORT C, et al. Comparison of enhancement of the vestibular perilymph between variable and constant flip angle-delayed 3D-FLAIR sequences in Menière disease[J]. AJNR Am J Neuroradiol, 2020, 41(4): 706-711. DOI: 10.3174/ajnr.A6483

    [14]

    BERNAERTS A, JANSSEN N, WUYTS F L, et al. Comparison between 3D SPACE FLAIR and 3D TSE FLAIR in Menière’s disease[J]. Neuroradiology, 2022, 64(5): 1011-1020. DOI: 10.1007/s00234-022-02913-0

    [15]

    GRAFF C G, SIDKY E Y. Compressive sensing in medical imaging[J]. Appl Opt, 2015, 54(8): C23-C44. DOI: 10.1364/AO.54.000C23

    [16]

    LI G B, HENNIG J, RAITHEL E, et al. An L1-norm phase constraint for half-Fourier compressed sensing in 3D MR imaging[J]. MAGMA, 2015, 28(5): 459-472. DOI: 10.1007/s10334-015-0482-7

    [17] 李彩霞, 陈 曌, 林 洁, 等. 光梭成像技术在肝脏钆塞酸二钠增强MRI中的应用[J]. 实用放射学杂志, 2023, 39(9): 1518-1521. DOI: 10.3969/j.issn.1002-1671.2023.09.032

    LI C X, CHEN Z, LIN J, et al. Application of constellation shuttling imaging technology in gadoxetate acid disodium enhanced MRI of liver[J]. J Pract Radiol, 2023, 39(9): 1518-1521. DOI: 10.3969/j.issn.1002-1671.2023.09.032

    [18] 张雪坤, 李 彦, 严福华, 等. 基于光梭成像的新型加速技术在颅脑MRI中的应用价值研究[J]. 诊断学理论与实践, 2021, 20(4): 378-383.

    ZHANG X K, LI Y, YAN F H, et al. Application value of new accelerating technology based on constellation shuttling imaging in brain MRI[J]. J Diagn Concepts Pract, 2021, 20(4): 378-383.

图(4)  /  表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  4
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-01-16
  • 录用日期:  2025-03-09
  • 网络出版日期:  2025-03-20
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回