Hippocampal neuroinflammation and neuronal injury in the acute phase of pentylenetetrazol induced epilepsy mouse model
-
摘要:目的
探讨戊四唑(pentylenetetrazol,PTZ)诱导癫痫模型小鼠急性痫样发作后24 h海马小胶质细胞和星形胶质细胞活化、促炎因子分泌以及神经元存活情况。
方法采用随机数字法将成年雄性C57BL/6小鼠随机分为对照组和PTZ组,每组28只。PTZ组诱导小鼠急性痫样发作,并于发作后24 h使用免疫荧光评估海马CA1区小胶质细胞和星形胶质细胞的活化状态,提取海马组织RNA检测炎症因子mRNA表达水平,采用HE染色评估海马组织神经元的存活情况。
结果PTZ组CA1区Iba1+小胶质细胞[(55.72±4.29)个 vs (35.71±9.66)个,P<0.001]和GFAP+星形胶质细胞[(51.61±8.21)个 vs (37.64±5.27)个,P<0.01]活化数量明显多于对照组;小胶质细胞活化表型M1型占比显著高于对照组(0.58±0.02 vs 0.35±0.08,P<
0.0001 ),M2型占比明显低于对照组(0.25±0.08 vs 0.44±0.09,P<0.01)。PTZ组海马组织中促炎因子IL-1β mRNA相对水平显著高于对照组(2.49±1.61 vs 1.02±0.68,P<0.05);急性期CA1区[(284.91±73.32)个 vs (498.88±176.79)个,P<0.05]及CA3区[(247.42±50.20)个 vs (457.78±159.08)个,P<0.05]存活神经元少于对照组。结论PTZ诱导癫痫模型小鼠急性痫样发作后24 h,海马CA1区小胶质细胞和星形胶质细胞激活,小胶质细胞以活化表型M1型为主发挥促炎作用,促炎因子分泌增加,存活的海马神经元数量减少。
Abstract:ObjectiveTo investigate the activation of microglia and astrocytes, the secretion of pro-inflammatory factors, and the survival of neurons in the hippocampus of mice with acute seizures induced by pentylenetetrazol (PTZ) 24 hours after the onset of seizures.
MethodsAdult male C57BL/6 mice were randomly assigned to the control group and the PTZ-induced acute epileptic seizure group using random numbers, with 28 mice in each group. The activation status of microglia and astrocytes in the CA1 region of the hippocampus was evaluated by immunofluorescence 24 hours after the onset of seizures. RNA was extracted from the hippocampal tissue to detect the expression level of inflammatory factor mRNA, and HE staining was used to assess the survival of neurons in the hippocampus.
ResultsTwenty-four hours after PTZ-induced acute seizures in mice, the numbers of activated Iba1+ microglia (55.72±4.29 vs 35.71±9.66, P<0.001) and GFAP+ astrocytes (51.61±8.21 vs 37.64±5.27, P<0.01) in the CA1 region were significantly increased compared with the control group; the proportion of M1 microglia was significantly increased (0.58±0.02 vs 0.35±0.08, P<
0.0001 ), while the proportion of M2 microglia was significantly decreased (0.25±0.08 vs 0.44±0.09, P<0.01); the mRNA level of pro-inflammatory factor IL-1β in the hippocampus was significantly higher than that in the control group (2.49±1.61 vs 1.02±0.68, P<0.05); the numbers of neurons in the CA1 (284.91±73.32 vs 498.88±176.79, P<0.05) and CA3 (247.42±50.20 vs 457.78±150.08, P<0.05) regions during the acute phase was significantly reduced compared with the control group.ConclusionsTwenty-four hours after PTZ-induced acute epileptic seizures in mice, microglia and astrocytes in the CA1 region of the hippocampus are activated, with microglia mainly presenting the M1 phenotype to exert pro-inflammatory effects, secretions of pro-inflammatory factors increasing, and surviving hippocampal neurons decreasing.
-
Keywords:
- epilepsy /
- hippocampal neurons /
- neuroinflammation /
- microglia
-
癫痫是由大脑神经元同步异常反复放电引起的以大脑功能障碍为特征的慢性神经系统疾病,目前影响全球约5 000万人[1]。现有的治疗药物大多作用于离子通道、神经递质及其受体,以抑制神经元放电。然而,30%的患者经药物或者手术治疗后病情仍无法有效控制,进而发展为难治性癫痫[2]。近年来,研究[3]指出,患者癫痫持续状态的反复发作与神经炎症和发作后神经元凋亡密切相关,因此,探讨痫性发作后神经炎症进展和神经元凋亡至关重要。
神经炎症是小胶质细胞和星形胶质细胞被激活后的免疫反应,与癫痫的发生过程密切相关[4]。在此过程中产生肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)、白细胞介素(interleukin,IL)-1β、IL-6等促炎因子,可引起组织损伤。癫痫发作或癫痫持续状态可触发快速而持久的小胶质细胞激活[5]。研究[6]发现,毛果芸香碱诱导的癫痫大鼠在癫痫持续状态3 d后,TNF-α、IL-1β和活化小胶质细胞标志物CD11b的mRNA水平升高,提示小胶质细胞参与癫痫大鼠的神经炎症反应。活化的小胶质细胞表现为胞体变大、突起增加、分支缩短,类似阿米巴虫样形态[7]。小胶质细胞活化后可分别通过经典途径和替代途径极化为M1型和M2型[8]。M1型小胶质细胞表达吞噬标志物(CD16/32和CD68)并释放促炎细胞因子,M2型细胞则表达精氨酸酶1(arginase-1,Arg-1),释放IL-10等神经保护细胞因子[9]。
小胶质细胞激活后产生大量的促炎因子,调节神经元的电压门控和配体门控离子通道,并作用于胶质细胞,影响其转录和快速发生的转录后事件[10]。IL-1β是癫痫发生最相关的炎症因子,广泛分布在海马组织,在癫痫患者和动物模型中高表达。研究[11]显示,IL-1β和受体IL-1R1结合可诱导胶质细胞中核因子κB(nuclear factor-κB,NF-κB)、JNK和p38激活。TNF-α主要由小胶质细胞产生,作用于神经元TNFR1受体,通过PI3K依赖性途径显著增加表面AMPARs(优先增加缺乏GluR2的AMPARs,其具有更好的钙离子通透性),同时减少表面GABAA受体,调节神经元兴奋/抑制平衡。TNF-α还可以激活NF-κB信号通路,进一步促进促炎因子TNF-α、IL-1β、IL-6和一氧化氮的产生。然而,单次痫性发作引发的小胶质细胞极化和神经炎症进展尚缺乏深入研究,神经炎症状态仍需进一步探索。本研究为排除其他病理因素干扰,采用戊四唑(pentylenetetrazol,PTZ)大剂量单次处理诱发癫痫急性发作,检测单次发作后小胶质细胞极化和和星形胶质细胞激活状态,并进一步检测炎症因子和急性期神经元损伤情况,为癫痫单次发作后的神经炎症研究提供参考。
1. 材料与方法
1.1 实验材料
C57BL/6小鼠购自斯贝福(苏州)生物技术有限公司。选择6~8周龄、体质量20~25 g的雄性小鼠。采用随机数字表法将小鼠分配至PTZ急性癫痫模型组(PTZ组)和生理盐水对照组(对照组),每组28只。采用免疫荧光、实时荧光定量聚合酶链反应(real-time quantitative polymerase chain reaction,RT-qPCR)和苏木精-伊红(hematoxylin-eosin,HE)染色等方法检测两组小鼠的分子生化指标。PTZ购自美国Sigma公司,RNA提取试剂盒购自日本Takara公司。
1.2 PTZ癫痫造模
PTZ组小鼠经腹腔注射PTZ(50 mg/kg),对照组小鼠经腹腔注射相等剂量的生理盐水。根据Racine量表观察小鼠癫痫发作,并进行分级。RacineⅠ级:咀嚼,胡须抖动、面部抽搐;Ⅱ级:颈部抽搐,点头;Ⅲ级:单侧前肢阵挛、拱背、竖尾;Ⅳ级:双侧前肢阵挛和后肢直立或失平衡立即恢复;Ⅴ级:直立和跌倒后抽搐,可伴随死亡。发作级别达到Ⅳ级及以上且未死亡的小鼠视为急性癫痫造模成功。
1.3 免疫组化
行为学测试完成后24 h,麻醉并处死小鼠。经心脏灌注磷酸缓冲盐溶液(phosphate buffered saline,PBS)和4%多聚甲醛(paraformaldehyde,PFA)固定液后取脑组织。在4℃条件下,将脑组织在4% PFA中浸泡过夜。经蔗糖梯度脱水后,使用OCT包埋剂包埋组织,并用冰冻切片机(Leica Biosystems公司,德国)经冠状面将海马切成30 μm的薄片。分别选取对照组和实验组各6只小鼠,每只小鼠脑组织选取3个海马切片进行染色。将切片在10% 胎牛血清和0.3% TritonX-100封闭液中封闭破膜2 h,在4℃条件下孵育一抗过夜,常温孵育二抗1.5 h。实验使用的抗体:Iba1抗体(1∶1 000;Wako公司,日本),GFAP(E4L7M)XP®Rabbit mAb(1∶200;Cell Signaling Technology公司,美国),Mouse Fc gamma RⅡ/RⅢ(CD32/CD16)抗体(1∶200;R&D Systems公司,美国),CD206抗体(1∶200;Biobyt公司,英国)。采用激光共聚焦扫描显微镜(A1R,尼康,日本)拍摄免疫荧光切片。
使用Iba1对小胶质细胞进行形态学分析标记,并选取来自每组6只小鼠的25个小胶质细胞进行形态重建。分别使用CD16/32和CD206标记PTZ诱导的癫痫模型小鼠急性期M1型和M2型小胶质细胞,并与Iba1共标。使用GFAP标记活化的星形胶质细胞。
1.4 海马组织RNA提取与RT-qPCR
检测PTZ诱导的小鼠急性痫样发作后2 h和24 h的促炎因子IL-1β、TNF-α和IL-6的mRNA表达水平。经心脏灌注PBS后在冰上分离海马组织。使用RNA提取试剂盒,按照说明书提取海马组织RNA。使用Prime Script™ RT Master Mix(Takara公司,日本)合成cDNA。用于扩增的cDNA引物见表1。使用QuantStudio Real-Time PCR系统(Thermo Fisher Scientific公司,美国)进行RT-qPCR循环。采用2−ΔΔCt方法分析扩增结果。
表 1 cDNA引物序列Table 1. cDNA primer sequencesPro-inflammatory factor F(5'-3') R(5'-3') IL-1β TGCCACCTTTTGACAGTGATG TGCCACCTTTTGACAGTGATG TNF-α CACAGAAAGCATGATCCGCGAC TGCCACAAGCAGGAATGAGAAGAG IL-6 GACAAAGCCAGAGTCCTTCAGA TGTGACTCCAGCTTATCTCTTGG β-actin GATTACTGCTCTGGCTCCTAGC GACTCATCGTACTCCTGCTTGC IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α. 1.5 HE染色
行为学测试完成24 h后,按上述方法取脑组织。将脑组织浸泡在4% PFA中过夜,进行石蜡包埋。随后将切片依次浸入苏木精染料、蒸馏水、酸性洗涤剂、伊红染料中进行染色。采用光镜(VS200,Olympus公司,日本)对神经元数量和形态学变化进行定量观察和评价。
1.6 统计学处理
采用ImageJ软件处理免疫荧光和HE染色图像。采用GraphPad Prism 8和Excel 2010进行数据分析和图像绘制。计量资料符合正态分布和方差齐性,以$ \bar {x}\pm s $表示,采用t检验。检验水准(α)为0.05。
2. 结 果
2.1 PTZ癫痫造模后急性期小胶质细胞和星形胶质细胞的激活状态
PTZ造模后24 h,PTZ组CA1区小胶质细胞数量显著多于对照组[(55.72±4.29)个 vs (35.71±9.66)个,t=4.635,P<0.001];PTZ组小鼠小胶质细胞表现为胞体变大,分支变短的活化态(图1A~1C)。 PTZ组小鼠海马CA1区小胶质细胞的孔隙度明显低于对照组(0.37±0.05 vs 0.43±0.10,t=2.521,P<0.05),细胞圆度明显高于对照组(0.85±0.04 vs 0.82±0.06,t=2.068,P<0.05);两组间小胶质细胞跨度比差异无统计学意义(图1D~1F)。PTZ组海马CA1区星形胶质细胞数量在PTZ造模后24 h显著多于对照组[(51.61±8.21)个 vs(37.64±5.27)个,t=3.707,P<0.01;图1G~1H]。结果提示在PTZ急性癫痫小鼠模型体内,小胶质细胞和星形胶质细胞活化在造模后24 h即可发生。
图 1 海马CA1区小胶质细胞和星形胶质细胞激活情况Figure 1. Activation of microglia and astrocytes in the CA1 region of the hippocampusA: Iba1 staining (green) for marking microglia in the CA1 region of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B: Morphological presentation of microglia in the CA1 region of the hippocampus in mice at control group and PTZ group; C: Statistical counts of activated microglia in the two groups; D-F: Statistical data on lacunarity, circularity, and span ratio of activated microglia in the two groups; G: GFAP staining (red) for marking astrocytes in the CA1 region of the hippocampus in mice at control group and PTZ group; H: Statistical counts of activated astrocytes in the two groups. *P<0.05, **P<0.01, ***P<0.001.2.2 PTZ癫痫造模后急性期小胶质细胞极化类型
结果(图2)显示,PTZ组M1型小胶质细胞的比例显著高于对照组(0.58±0.02 vs 0.35±0.08,t=6.742,P<
0.0001 );M2型小胶质细胞的比例显著低于对照组(0.25±0.08 vs 0.44±0.09,t=3.784,P<0.01)。图 2 海马CA1区小胶质细胞极化类型占比Figure 2. Proportions of microglial polarization types in the CA1 region of the hippocampusA: Co-labeling staining of CD16/32 (red) and Iba1 (green) in microglia in the CA1 region of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B: Statistical analysis of the proportion of M1 microglia in the two groups; C: Co-labeling staining of CD206 (red) and Iba1 (green) in microglia in the CA1 region of the hippocampus in mice at control group and PTZ group; D: Statistical analysis of the proportion of M2 microglia in the two groups. **P<0.01, ****P<0.000 1.2.3 PTZ癫痫造模后急性期炎症因子释放
造模后2 h,PTZ组3种促炎因子 mRNA水平均显著高于对照组(P<0.05,图3A~3C)。造模后24 h,PTZ组 IL-1β mRNA相对水平显著高于对照组(2.49±1.61 vs 1.02±0.68,t=2.233,P<0.05;图3D)。两组IL-6与TNF-α的mRNA水平差异无统计学意义(图3E~3F)。
图 3 PTZ诱导急性癫痫发作后促炎细胞因子mRNA表达水平Figure 3. The mRNA expression levels of pro-inflammatory cytokines after acute seizures induced by PTZA-C: The mRNA expression levels and statistical results of IL-1β, IL-6, and TNF-α in the hippocampal tissue of control mice (control group) and mice at 2 hours after PTZ modeling (PTZ group); D-F: The mRNA expression levels and statistical results of IL-1β, IL-6, and TNF-α in the hippocampal tissue of control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group). IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α. *P<0.05.2.4 PTZ癫痫造模后急性期海马神经元丢失
HE染色结果(图4)显示:造模后,海马区神经元数量较对照组减少,CA1区和CA3区锥体细胞层次明显减少,出现部分坏死神经元,表现为神经元胞体变形和核固缩现象。PTZ组小鼠海马CA1区神经元总数少于对照组[(284.91±73.32)个 vs (498.88±176.79)个,t=2.738,P<0.05],CA3区神经元总数少于对照组[(247.42±50.20)个 vs (457.78±159.08)个,t=3.092,P<0.05];两组DG区神经元总数差异无统计学意义。
图 4 PTZ诱导急性癫痫发作24 h后海马区神经元丢失情况Figure 4. Neuron loss in the hippocampal region 24 hours after acute seizures induced by PTZA: HE staining images of neurons in the CA1, CA3, and DG regions of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B-D: Statistical results of the number of neurons in each region of the hippocampus in the two groups. *P<0.05.3. 讨 论
PTZ没有显著的神经毒性作用,因此被广泛用于研究癫痫的发病机制以及筛选抗癫痫药物(antiepileptic drugs,AEDs)。本研究探讨了PTZ诱导的癫痫模型小鼠发作急性期(诱导后24 h)的神经炎症进展和神经元存活情况,主要发现:(1)小胶质细胞数量增多,突起分支变短,胞体变大、孔隙度减小,呈活化态外观;星形胶质细胞的活化数量增加,密度增大。(2)小胶质细胞M1型占比升高,而M2型占比降低。(3)炎症因子IL-1β的mRNA表达水平上升。(4)小鼠癫痫发作急性期海马CA1和CA3区的神经元排列层次减少,神经元总数下降。
癫痫后小胶质细胞激活的机制尚未完全确定。一般认为,活化涉及异常兴奋活动引起的海马区缺氧诱导因子1α(hypoxia-inducible factor-1α,HIF-1α)积累,以及损伤神经元或功能激活细胞释放的三磷酸腺苷(adenosine triphosphate,ATP)、高迁移率族蛋白B1(high-mobility group box 1,HMGB1)和各种神经递质等调节,这些过程与NF-κB信号通路密切相关[1, 12]。小胶质细胞对于中枢的异常刺激非常敏感,且反应迅速。在创伤性应激模型中,损伤10 min以内即可发现小胶质细胞形态改变并向损伤部位迁移[13]。红藻氨酸(kainic acid,KA)诱导的严重癫痫发作后6 h,小胶质细胞即可形成突起囊袋参与应对癫痫损伤[14]。小胶质细胞的反应速度与严重的痫性发作后神经元活跃度密切相关[8]。本研究中,小胶质细胞PTZ造模后24 h仍处于激活状态,表现为阿米巴虫样外观的活化态。活化的小胶质细胞可能通过增加突触修剪,释放兴奋性因子调节兴奋/抑制平衡,释放促炎细胞因子导致癫痫的发生和加重。然而,研究[15]指出,活化的小胶质细胞中IL-4、IL-10的mRNA水平在癫痫后也可升高,说明小胶质细胞在癫痫后神经炎症进展中的角色复杂,有必要将其分成两种极化型来讨论。
疾病进展中小胶质细胞极化表型随时间发生转化。一项颞叶癫痫模型研究[16]中,急性期(24 h)癫痫动物海马组织中的小胶质细胞特异性M1型和M2型标志物表达均增加,而在癫痫晚期,M2型标志物表达逐渐下降,提示小胶质细胞表型转化可能参与慢性期自发癫痫的发生。近期一项研究[17]探讨了M1型小胶质细胞极化的机制,发现HIF-1α表达增加会导致小胶质细胞数量的增加,并诱导其从M2表型向M1表型极化,进而释放促炎介质。同时,下调Notch1信号通路促进小胶质细胞从M2型向M1型转化,加重炎症反应和组织损伤[16]。此外,另有研究[18]提示NF-κB活化密切参与小胶质细胞相关神经炎症进展,NF-κB p65 Ser276位点磷酸化可以促进小胶质细胞活化和促炎因子释放,NF-κB p65表达的增加促进M2表型向M1表型的转化。咪康唑[12]、伊马替尼[19]、红花[20]等药物可通过抑制NF-κB通路的激活来减轻癫痫时的神经元损伤。
M2型小胶质细胞能够修复神经损伤,分泌的抗炎因子可以为神经元提供保护作用,包括抵抗氧化应激、清除细胞碎片并促进组织再生。M2型小胶质细胞的极化比例与疾病进展有关。例如,通过刺激瞬时受体电位香草酸亚型1(transient receptor potential vanilloid 1,TRPV1),可以抑制M2型小胶质细胞释放转化生长因子β1(transforming growth factor-β1,TGF-β1)和Toll样受体4(Toll-like receptor 4,TLR4),从而间接增强癫痫发作的易感性[21]。此外,通过调节JNK/MAPK通路抑制miR-106b-5p表达,可促进癫痫后小胶质细胞 M2型极化[22]。本研究小胶质细胞亚型分析结果提示,M1型小胶质细胞占比高于M2型,提示小胶质细胞炎症仍在持续。这一阶段使用抗炎药物干预或许可以发挥抑制炎症损伤的作用。
探讨小胶质细胞M1与M2表型的占比及其转化的关键点有助于确定单次急性痫性发作后用药干预的最佳时间,促进M2表型小胶质细胞极化为癫痫提供了一种新的神经保护方法。例如,二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)通过抑制NOX2增加线粒体呼吸链复合物Ⅰ~Ⅴ蛋白的表达,增强线粒体代谢来降低氧化应激,促进幼鼠癫痫造模后M2小胶质细胞表型极化[23]。目前,在缺血性卒中模型中小胶质细胞表型迁移已经被广泛研究。然而癫痫模型中小胶质细胞极化表型相关研究仍然较少,课题组后续会增加检测时间点,确定癫痫单次急性发作后小胶质细胞的表型迁移特点。此外,本研究发现PTZ模型小鼠急性痫性发作后24 h,海马CA1区的星型胶质细胞明显活化。在癫痫中,反应型星形胶质细胞增生晚于活化的小胶质细胞[24],M1型小胶质细胞通过释放促炎因子激活星形胶质细胞[25]。本研究中,星形胶质细胞激活提示PTZ造模24 h时小胶质细胞已启动后续反应型星形胶质细胞,反应型星形胶质细胞中可产生异常的星形胶质细胞Ca2+信号转导,进而导致癫痫发作的易感性增强。因此,本研究提出,在PTZ急性癫痫模型相关神经炎症研究中,使用药物早期(24 h内)干预小胶质细胞炎症反应对于减缓神经炎症恶化很重要。
促炎因子的表达和释放是神经炎症进展的诱因和结果[26]。难治性颞叶癫痫患者病灶中可检测到炎性细胞因子水平升高[8, 27],其中IL-1β水平与抽搐的严重程度相关。本研究发现,PTZ造模24 h后,IL-1β的mRNA水平显著升高,提示炎症仍然存在;而IL-6与TNF-α的mRNA水平升高程度与对照组差异无统计学意义,可能是由于两者的表达水平随时间变化波动大。因此,建议PTZ造模后检测细胞因子提前至造模4 h以内[15]。Gómez等[28]研究发现,3种炎症因子在PTZ急性癫痫造模后10 min即可升高。癫痫发生后,IL-1β通过激活NMDA受体并阻断GABAA受体导致神经元兴奋性升高。大量研究提示IL-1β可以引发神经元损伤:小胶质细胞来源的IL-1β通过内质网应激介导的凋亡途径促进海马神经元凋亡[29];抑制NLRP3可能通过下调IL-1β减轻局部脑损伤[30];IL-1β通过上调p53表达诱导神经元凋亡[31]。此外,本研究发现PTZ注射后24 h出现CA1区和CA3区神经元丢失,与既往研究[20]结果一致。其中,CA3区神经元丢失最为明显,海马神经元坏死导致谷氨酸等神经递质异常分泌[32],GABA能神经元损伤或丢失,使抑制性突触传递作用减弱,造成兴奋抑制失衡[33]。此外,Chen等[34]发现癫痫急性期产生的齿状颗粒细胞通过局部兴奋环路与早生颗粒细胞延长癫痫发作持续时间,因此减少神经细胞大量丢失和抑制异常神经再生也是癫痫治疗的关键。
综上所述,本研究结果显示,单次急性痫样发作即可引起海马区小胶质细胞活化,M1型小胶质细胞增多,这与炎症因子的释放和神经元损伤关系密切。单次严重痫性发作引起的小胶质细胞活化时间和具体机制需要进一步研究,小胶质细胞相关炎症在单次痫性发作后的神经元损伤中的作用及机制需要进一步探究。
伦理声明 本研究经复旦大学附属中山医院动物实验伦理委员会批准(Y2019-053)。
利益冲突 所有作者声明不存在利益冲突。
作者贡献 支琳钰:研究设计,收集与分析数据,撰写文章;韩婉若:分析数据及审阅文章;Benjamin Hongye Wang:修改与审阅文章;王国祥:指导实验,数据解释;刘旭:研究选题与设计,修改与审阅文章,提供研究资金支持。
-
图 1 海马CA1区小胶质细胞和星形胶质细胞激活情况
Figure 1. Activation of microglia and astrocytes in the CA1 region of the hippocampus
A: Iba1 staining (green) for marking microglia in the CA1 region of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B: Morphological presentation of microglia in the CA1 region of the hippocampus in mice at control group and PTZ group; C: Statistical counts of activated microglia in the two groups; D-F: Statistical data on lacunarity, circularity, and span ratio of activated microglia in the two groups; G: GFAP staining (red) for marking astrocytes in the CA1 region of the hippocampus in mice at control group and PTZ group; H: Statistical counts of activated astrocytes in the two groups. *P<0.05, **P<0.01, ***P<0.001.
图 2 海马CA1区小胶质细胞极化类型占比
Figure 2. Proportions of microglial polarization types in the CA1 region of the hippocampus
A: Co-labeling staining of CD16/32 (red) and Iba1 (green) in microglia in the CA1 region of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B: Statistical analysis of the proportion of M1 microglia in the two groups; C: Co-labeling staining of CD206 (red) and Iba1 (green) in microglia in the CA1 region of the hippocampus in mice at control group and PTZ group; D: Statistical analysis of the proportion of M2 microglia in the two groups. **P<0.01, ****P<0.000 1.
图 3 PTZ诱导急性癫痫发作后促炎细胞因子mRNA表达水平
Figure 3. The mRNA expression levels of pro-inflammatory cytokines after acute seizures induced by PTZ
A-C: The mRNA expression levels and statistical results of IL-1β, IL-6, and TNF-α in the hippocampal tissue of control mice (control group) and mice at 2 hours after PTZ modeling (PTZ group); D-F: The mRNA expression levels and statistical results of IL-1β, IL-6, and TNF-α in the hippocampal tissue of control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group). IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α. *P<0.05.
图 4 PTZ诱导急性癫痫发作24 h后海马区神经元丢失情况
Figure 4. Neuron loss in the hippocampal region 24 hours after acute seizures induced by PTZ
A: HE staining images of neurons in the CA1, CA3, and DG regions of the hippocampus in control mice (control group) and mice at 24 hours after PTZ modeling (PTZ group); B-D: Statistical results of the number of neurons in each region of the hippocampus in the two groups. *P<0.05.
表 1 cDNA引物序列
Table 1 cDNA primer sequences
Pro-inflammatory factor F(5'-3') R(5'-3') IL-1β TGCCACCTTTTGACAGTGATG TGCCACCTTTTGACAGTGATG TNF-α CACAGAAAGCATGATCCGCGAC TGCCACAAGCAGGAATGAGAAGAG IL-6 GACAAAGCCAGAGTCCTTCAGA TGTGACTCCAGCTTATCTCTTGG β-actin GATTACTGCTCTGGCTCCTAGC GACTCATCGTACTCCTGCTTGC IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α. -
[1] VEZZANI A, ARONICA E, MAZARATI A, et al. Epilepsy and brain inflammation[J]. Exp Neurol, 2013, 244: 11-21. DOI: 10.1016/j.expneurol.2011.09.033
[2] KLEIN P, KAMINSKI R M, KOEPP M, et al. New epilepsy therapies in development[J]. Nat Rev Drug Discov, 2024, 23(9): 682-708. DOI: 10.1038/s41573-024-00981-w
[3] MATIN N, TABATABAIE O, FALSAPERLA R, et al. Epilepsy and innate immune system: a possible immunogenic predisposition and related therapeutic implications[J]. Hum Vaccin Immunother, 2015, 11(8): 2021-2029. DOI: 10.1080/21645515.2015.1034921
[4] DONG X Y, FAN J C, LIN D H, et al. Captopril alleviates epilepsy and cognitive impairment by attenuation of C3-mediated inflammation and synaptic phagocytosis[J]. J Neuroinflammation, 2022, 19(1): 226. DOI: 10.1186/s12974-022-02587-8
[5] RAVIZZA T, SCHEPER M, DI SAPIA R, et al. mTOR and neuroinflammation in epilepsy: implications for disease progression and treatment[J]. Nat Rev Neurosci, 2024, 25(5): 334-350. DOI: 10.1038/s41583-024-00805-1
[6] BENSON M J, MANZANERO S, BORGES K. Complex alterations in microglial M1/M2 markers during the development of epilepsy in two mouse models[J]. Epilepsia, 2015, 56(6): 895-905. DOI: 10.1111/epi.12960
[7] YOUNG K, MORRISON H. Quantifying microglia morphology from photomicrographs of immunohistochemistry prepared tissue using ImageJ[J]. J Vis Exp, 2018(136): 57648.
[8] SIOW P F, TSAO C Y, CHANG H C, et al. Mice lacking connective tissue growth factor in the forebrain exhibit delayed seizure response, reduced c-Fos expression and different microglial phenotype following acute PTZ injection[J]. Int J Mol Sci, 2020, 21(14): 4921. DOI: 10.3390/ijms21144921
[9] LAN X, HAN X N, LI Q, et al. Modulators of microglial activation and polarization after intracerebral haemorrhage[J]. Nat Rev Neurol, 2017, 13(7): 420-433. DOI: 10.1038/nrneurol.2017.69
[10] VILLASANA-SALAZAR B, VEZZANI A. Neuroinflammation microenvironment sharpens seizure circuit[J]. Neurobiol Dis, 2023, 178: 106027. DOI: 10.1016/j.nbd.2023.106027
[11] FANN D Y, LIM Y A, CHENG Y L, et al. Evidence that NF-κB and MAPK signaling promotes NLRP inflammasome activation in neurons following ischemic stroke[J]. Mol Neurobiol, 2018, 55(2): 1082-1096. DOI: 10.1007/s12035-017-0394-9
[12] GONG L F, ZHU T, CHEN C, et al. Miconazole exerts disease-modifying effects during epilepsy by suppressing neuroinflammation via NF-κB pathway and iNOS production[J]. Neurobiol Dis, 2022, 172: 105823. DOI: 10.1016/j.nbd.2022.105823
[13] LIER J L, ONDRUSCHKA B, BECHMANN I, et al. Fast microglial activation after severe traumatic brain injuries[J]. Int J Legal Med, 2020, 134(6): 2187-2193. DOI: 10.1007/s00414-020-02308-x
[14] EYO U B, HARUWAKA K, MO M S, et al. Microglia provide structural resolution to injured dendrites after severe seizures[J]. Cell Rep, 2021, 35(5): 109080. DOI: 10.1016/j.celrep.2021.109080
[15] TEMP F R, MARAFIGA J R, MILANESI L H, et al. Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice[J]. Eur J Pharmacol, 2017, 810: 15-25. DOI: 10.1016/j.ejphar.2017.05.013
[16] DENG X L, FENG L, WANG Z X, et al. The Runx1/Notch1 signaling pathway participates in M1/M2 microglia polarization in a mouse model of temporal lobe epilepsy and in BV-2 cells[J]. Neurochem Res, 2020, 45(9): 2204-2216. DOI: 10.1007/s11064-020-03082-3
[17] FU M, ZHU Y Q, ZHANG J Q, et al. MicroRNA-221-3p suppresses the microglia activation and seizures by inhibiting of HIF-1α in valproic acid-resistant epilepsy[J]. Front Pharmacol, 2021, 12: 714556. DOI: 10.3389/fphar.2021.714556
[18] LENG F D, EDISON P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3): 157-172. DOI: 10.1038/s41582-020-00435-y
[19] SINGH S, SINGH T G. Imatinib attenuates pentylenetetrazole kindled and pilocarpine induced recurrent spontaneous seizures in mice[J]. Neurochem Res, 2023, 48(2): 418-434. DOI: 10.1007/s11064-022-03758-y
[20] YAN J P, LI T T, JI K Y, et al. Safranal alleviates pentetrazole-induced epileptic seizures in mice by inhibiting the NF-κB signaling pathway and mitochondrial-dependent apoptosis through GSK-3β inactivation[J]. J Ethnopharmacol, 2024, 333: 118408. DOI: 10.1016/j.jep.2024.118408
[21] KONG W L, WANG X, YANG X L, et al. Activation of TRPV1 contributes to recurrent febrile seizures via inhibiting the microglial M2 phenotype in the immature brain[J]. Front Cell Neurosci, 2019, 13: 442.
[22] YU T, HUO L, LEI J, et al. Modulation of microglia M2 polarization and alleviation of hippocampal neuron injury by miR-106b-5p/RGMa in a mouse model of status epilepticus[J]. Inflammation, 2022, 45(6): 2223-2242. DOI: 10.1007/s10753-022-01686-1
[23] YANG Y Q, CHEN L, ZHANG N, et al. DHA and EPA alleviate epileptic depression in PTZ-treated young mice model by inhibiting neuroinflammation through regulating microglial M2 polarization and improving mitochondrial metabolism[J]. Antioxidants (Basel), 2023, 12(12): 2079. DOI: 10.3390/antiox12122079
[24] SANO F, SHIGETOMI E, SHINOZAKI Y, et al. Reactive astrocyte-driven epileptogenesis is induced by microglia initially activated following status epilepticus[J]. JCI Insight, 2021, 6(9): 135391. DOI: 10.1172/jci.insight.135391
[25] ALAM M M, ZHAO X F, LIAO Y, et al. Deficiency of microglial autophagy increases the density of oligodendrocytes and susceptibility to severe forms of seizures[J]. eNeuro, 2021, 8(1): ENEURO.0183-20.2021.
[26] VEZZANI A, MONETA D, CONTI M, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice[J]. Proc Natl Acad Sci USA, 2000, 97(21): 11534-11539. DOI: 10.1073/pnas.190206797
[27] ALTMANN A, RYTEN M, DI NUNZIO M, et al. A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies[J]. Neuropathol Appl Neurobiol, 2022, 48(1): e12758. DOI: 10.1111/nan.12758
[28] GÓMEZ C D, BUIJS R M, SITGES M. The anti-seizure drugs vinpocetine and carbamazepine, but not valproic acid, reduce inflammatory IL-1β and TNF-α expression in rat hippocampus[J]. J Neurochem, 2014, 130(6): 770-779. DOI: 10.1111/jnc.12784
[29] LIU X D, CHEN Y, WANG H H, et al. Microglia-derived IL-1β promoted neuronal apoptosis through ER stress-mediated signaling pathway PERK/eIF2α/ATF4/CHOP upon arsenic exposure[J]. J Hazard Mater, 2021, 417: 125997. DOI: 10.1016/j.jhazmat.2021.125997
[30] WU C F, ZHANG G, CHEN L, et al. The role of NLRP3 and IL-1β in refractory epilepsy brain injury[J]. Front Neurol, 2020, 10: 1418. DOI: 10.3389/fneur.2019.01418
[31] SHAN H, BIAN Y Q, SHU Z M, et al. Fluoxetine protects against IL-1β-induced neuronal apoptosis via downregulation of p53[J]. Neuropharmacology, 2016, 107: 68-78. DOI: 10.1016/j.neuropharm.2016.03.019
[32] ALGATTAS H, HUANG J H. Traumatic brain injury pathophysiology and treatments: early, intermediate, and late phases post-injury[J]. Int J Mol Sci, 2013, 15(1): 309-341. DOI: 10.3390/ijms15010309
[33] GHADIRI T, GORJI A, VAKILZADEH G, et al. Neuronal injury and death following focal mild brain injury: the role of network excitability and seizure[J]. Iran J Basic Med Sci, 2020, 23(1): 63-70.
[34] CHEN L Y, XU Y W, CHENG H M, et al. Adult-born neurons in critical period maintain hippocampal seizures via local aberrant excitatory circuits[J]. Signal Transduct Target Ther, 2023, 8(1): 225. DOI: 10.1038/s41392-023-01433-4