高级检索

外周血自然杀伤细胞CX3CR1在脓毒症患者中的表达特征及其与肠道菌群的关系

穆素成, 孙湛, 宋振举

穆素成,孙 湛,宋振举. 外周血自然杀伤细胞CX3CR1在脓毒症患者中的表达特征及其与肠道菌群的关系[J]. 中国临床医学, 2024, 31(6): 851-859. DOI: 10.12025/j.issn.1008-6358.2024.20241168
引用本文: 穆素成,孙 湛,宋振举. 外周血自然杀伤细胞CX3CR1在脓毒症患者中的表达特征及其与肠道菌群的关系[J]. 中国临床医学, 2024, 31(6): 851-859. DOI: 10.12025/j.issn.1008-6358.2024.20241168
MU S C, SUN Z, SONG Z J. Characteristics of the expression of CX3CR1 in natural killer cells from peripheral blood and its association with gut microbiota in sepsis patients[J]. Chin J Clin Med, 2024, 31(6): 851-859. DOI: 10.12025/j.issn.1008-6358.2024.20241168
Citation: MU S C, SUN Z, SONG Z J. Characteristics of the expression of CX3CR1 in natural killer cells from peripheral blood and its association with gut microbiota in sepsis patients[J]. Chin J Clin Med, 2024, 31(6): 851-859. DOI: 10.12025/j.issn.1008-6358.2024.20241168

外周血自然杀伤细胞CX3CR1在脓毒症患者中的表达特征及其与肠道菌群的关系

基金项目: 国家重点研发计划(2021YFC2501800),上海市青年科技英才扬帆计划(23YF1405000),上海市卫生健康委员会课题(201801077),复旦大学附属中山医院“卓越住院医师”临床博士后项目(2023ZYYS-012).
详细信息
    作者简介:

    穆素成,博士,住院医师. E-mail:1007452660@qq.com

    通讯作者:

    宋振举: Tel:021-64041990, E-mail:song.zhenju@zs-hospital.sh.cn

  • 中图分类号: R 631.2

Characteristics of the expression of CX3CR1 in natural killer cells from peripheral blood and its association with gut microbiota in sepsis patients

Funds: Supported by National Key R&D Program (2021YFC2501800), Shanghai Youth Science and Technology Talent Sailing Program (23YF1405000), Municipal Health Commission Program (201801077), and Outstanding Resident Clinical Postdoctoral Program of Zhongshan Hospital, Fudan University (2023ZYYS-012).
  • 摘要:
    目的 

    探讨脓毒症患者外周血单个核细胞(peripheral blood mononuclear cell, PBMC)中自然杀伤(natural killer, NK)细胞CX3CR1表达量的变化规律及其与肠道菌群的关系。

    方法 

    选择2020年1月至2021年1月在复旦大学附属中山医院诊治的24例脓毒症患者,另于2021年1月招募10名健康志愿者作为健康对照。收集脓毒症患者入院第1天和第4天的粪便及外周血。通过Illumina MiSeq平台对肠道菌群的16S rDNA基因V3~4进行测序。使用CD56阳性磁珠分选,并以流式细胞术鉴定外周血CD3CD56NK细胞,采用qPCR检测CX3CR1表达量。分析NK细胞中CX3CR1表达量变化以及其与肠道菌群的相关性。

    结果 

    与健康对照组相比,脓毒症患者肠道菌群Shannon多样性指数及厚壁菌门(Firmicutes)占比降低;与入院第1天相比,脓毒症患者入院第4天肠道菌群Shannon多样性指数减小,变形菌门(Proteobacteria)占比升高,肠球菌属(Enterococcus)与克雷伯菌属(Klebsiella)相对含量增加。脓毒症患者入院第4天外周血NK细胞的CX3CR1表达量低于入院第1天(P<0.001);与存活患者相比,死亡患者入院第4天的CX3CR1表达量降低(P<0.05)。Spearman相关分析显示,外周血NK细胞CX3CR1表达量与肠道菌群数量及Shannon多样性指数正相关(P<0.01)。

    结论 

    脓毒症患者外周血NK细胞CX3CR1表达量随病程进展下降,并与预后相关,其表达与肠道菌群密切相关。

    Abstract:
    Objective 

    To explore the changes in the expression of CX3CR1 in natural killer (NK) cells from peripheral blood mononuclear cells (PBMC) in sepsis patients and its association with gut microbiota.

    Methods 

    A total of 24 sepsis patients were selected from January 2020 to January 2021 at Zhongshan Hospital, Fudan University, and 10 healthy volunteers were recruited in January 2021 as healthy controls. Fecal samples and peripheral blood were collected from sepsis patients on the first and fourth days of hospitalization. Sequencing of the V3-4 region of the 16S rDNA gene of gut microbiota was performed using the Illumina MiSeq platform. The peripheral blood samples were isolated by positively selected magnetic beads, and the CD3CD56NK cells were identified by flow cytometry. The mRNA expression of CX3CR1 was detected by qPCR, and the changes in CX3CR1 expression and its correlation with gut microbiota were analyzed.

    Results 

    Compared with healthy control group, the Shannon diversity index of the gut microbiota and the proportion of Firmicutes in sepsis patients decreased; compared with admission day, the Shannon diversity of the gut microbiota in sepsis patients on the fourth day of hospitalization significantly decreased, the proportion of Proteobacteria on phylum level and the relative abundance of Enterococcus and Klebsiella on genus level significantly increased. The CX3CR1 expression of PBMC-NK cells in sepsis patients on the fourth day was significantly lower than that on the admission day (P<0.001). Compared with surviving patients, CX3CR1 expression in non-surviving patients significantly decreased on the fourth day (P<0.05). Spearman correlation analysis showed that CX3CR1 expression of PBMC-NK cells was positively correlated with the quantity of gut microbiota and the Shannon diversity index (P<0.01).

    Conclusions 

    The expression of CX3CR1 in PBMC-NK cells in sepsis patients decreases with disease progression, and is related to prognosis. Furthermore, its expression is found to be closely related to the gut microbiota.

  • 脓毒症是机体对感染反应失调引起的器官功能障碍综合征,是重症监护室(intensive care unit, ICU)患者死亡的首要原因,死亡率为20%~30%[1]。脓毒症患者因长期免疫抑制易继发肺部和血流的二次感染[2],而免疫抑制通常发生在脓毒症早期,几乎与炎症因子风暴同时发生。因此,早期调控和平衡脓毒症患者的免疫功能,对患者的预后意义重大[3]

    自然杀伤(natural killer, NK)细胞是“人体免疫的第一道屏障”,能够在感染早期调节免疫反应,增强或抑制其他免疫细胞的活性[4]。研究[5]表明,脓毒症患者NK细胞活性基因表达下调是继发感染的危险因素。当机体感染时,NK细胞及其亚型细胞被感染部位的趋化因子招募,大量迁移至相应组织,启动早期炎症反应[6]

    NK细胞的趋化迁移过程需要激活趋化因子受体。CX3CR1是一种能够介导淋巴细胞及单核细胞游走、活化与黏附的趋化因子受体,当CX3CR1表达量升高时,细胞迁移能力增强[7]。CX3CR1介导的单核细胞黏附机制对脓毒症患者具有保护作用[8],但其在NK细胞中的作用尚不清楚。CX3CR1NK是近年定义的一种成熟NK细胞亚群,其前体是骨髓来源的CD11bhighKLRG1NK细胞[9],代表骨髓NK细胞分化的一种终末状态。本课题组通过检索TIGER、BioGPS等数据库发现,CX3CR1在CD56highNK细胞上的表达水平很高。也有研究[10]表明,高表达CX3CR1的NK细胞具有更强的杀伤及趋化迁移功能。目前,关于CX3CR1NK细胞的研究主要集中在自身免疫性脑脊髓炎[11]、病毒性肝炎[12-13]以及腹主动脉瘤[14]等疾病中,而在脓毒症方面的研究尚鲜见。

    脓毒症患者肠道菌群紊乱与免疫细胞功能关系密切[15]。本课题组前期研究[16-17]发现,脓毒症患者入院后肠道菌群发生剧烈改变。因此,本研究拟通过检测脓毒症患者外周血单个核细胞(peripheral blood mononuclear cell, PBMC)中NK细胞的CX3CR1 mRNA表达量,探讨CX3CR1与脓毒症病程变化、肠道菌群的相关性,为进一步研究脓毒症患者细胞免疫与肠道菌群变化提供依据。

    选择2020年1月至2021年1月在复旦大学附属中山医院急诊ICU住院治疗的脓毒症患者24例,并于2021年1月招募10名志愿者作为健康对照。脓毒症患者纳入标准:(1)年龄≥18岁;(2)符合2016年Sepsis 3.0诊断标准[18];(3)预计住院时间≥4 d。排除标准:(1)恶性肿瘤病史;(2)既往有明确的肠道疾病(包括克罗恩病、溃疡性结肠炎、肠易激综合征等);(3)原发性免疫缺陷或存在免疫抑制,患者入院后使用地塞米松>10 mg/d或入院前3个月内累计使用地塞米松≥700 mg;(4)患者入院前3个月内使用大量广谱抗生素;(5)既往肿瘤或使用化疗药物;(6)孕产妇或哺乳期妇女;(7)未能成功收集粪便。健康对照组招募要求:(1)年龄≥18岁;(2)体健,6个月内未用抗生素;(3)清淡饮食,无高脂、高糖、辛辣饮食习惯;(4)作息规律,无抽烟、酗酒等嗜好。

    收集脓毒症患者临床资料。(1)基本情况:年龄、性别、基础疾病、感染部位、病原菌等。(2)样本采集:患者入院当天和第4天的外周静脉血5 mL,以及采血当天的粪便。(3)实验室指标:患者入院当天和第4天的生化、血常规、细胞免疫学信息,主要包括C反应蛋白(C-reactive protein, CRP),T细胞、B细胞、NK细胞计数及占比,以及各类炎症、抗炎因子。(4)临床指标:收集患者入院当天和第4天的序贯器官衰竭评分(sequential organ failure assessment, SOFA)以及急性生理学与慢性健康状况评分Ⅱ(Acute Physiology and Chronic Health Evaluation Ⅱ, APCHEⅡ)。(5)随访资料:记录患者入院第28天的生存情况。收集健康志愿者年龄、性别,抽取5 mL外周静脉血,留取粪便。

    外周血经400×g离心10 min后,留取上清存﹣80℃冰箱备用。在沉淀物中以体积比1∶1加入生理盐水重悬全血细胞;向有10 mL淋巴细胞分离液的50 mL离心管中,贴壁缓慢加入重悬的全血细胞,使血和分离液分为上下两层。无需静置,直接梯度离心,升速加速度设置为2,升至800×g后离心20 min,降速加速度设置为1。外周血离心后分为4层,自上而下第2层(云雾状层)即为淋巴细胞。小心吸取淋巴细胞,转移至15 mL离心管中,加入PBS洗涤后常规离心。

    采用STEMCELL公司EasySepTM分选试剂盒。在1×107个/100 μL的细胞密度下,每100 μL中加入10 μL 人CD56分选cocktailⅡ抗体;孵育后加入Dextran RapidSpheresTM磁珠震荡混匀,加入RoboSeqTM缓冲液,置入EasySepTM Magnet磁力架,静置3 min;倒出磁力架液体,加入缓冲液,重复冲洗、倒出步骤共3次;加入PBS后离心,沉淀物即为外周血CD56NK细胞,PBS重悬备用。

    吸取20 μL细胞加入流式管(其余细胞离心后加入TRIzol保存),PBS补足至100 μL,加入人CD3、NK1.1流式抗体各1 μL,冰上避光孵育30 min;加入1 mL PBS洗除抗体,常规离心后弃上清,加入200 μL PBS重悬,于ArialⅡ流式细胞仪(BD公司)上机检测。用FlowJo 10.0鉴定CD3CD56NK细胞分选比例。磁珠分选外周血NK细胞阳性率为91.9%,提示分选方法高效可行(图1)。

    图  1  流式细胞仪鉴定外周血单个核细胞中自然杀伤细胞的纯度
    Figure  1.  Identify of the purity of natural killer cells from peripheral blood mononuclear cells by flow cytometry

    采用南京诺唯赞生物科技股份有限公司的RNA逆转录试剂盒及qPCR试剂盒,赛默飞世尔科技公司的GeneAmp PCR仪以及荧光定量PCR仪。将用TRIzol解冻后的NK细胞以体积比5∶1加入氯仿,涡旋震荡,静置后离心;吸取上层清亮液体至EP管后加入同体积异丙醇,混匀、静置后离心弃上清,底部可见贴壁羽毛状沉淀;加入1 mL 95%乙醇或无水乙醇洗涤后离心弃上清,自然晾干后以DEPC溶解沉淀,NanoDrop检测RNA浓度。

    在PBMC-NK细胞RNA中加入5×HiScriptⅡqRT SuperMixⅡ与cDNA模板配制成反转录体系,通过反转录仪,获得cDNA。取合适量加入2×AceQ qPCR SYBR Green Master Mix(Low ROX Premixed)及CX3CR1正反向引物,经过95℃ 5 min预变性,95℃ 10 s、60℃ 30 s循环40次,95℃ 15 s解链,60℃ 60 s延伸,95℃ 15 s打开双链,形成溶解曲线。检查溶解曲线合格,以Ct值表示目的基因扩增后达设定检测阈值的循环次数,通过2-ΔΔCt法计算相对表达量。

    取脓毒症患者粪便,存于﹣80℃冰箱,抽提细菌DNA,按规定程序扩增细菌16S rDNA中V3~4(表1)。采用Illumina MiSeq测序仪检测细菌16S rDNA扩增产物,测序数据通过Mothur 1.39.5软件进行均一化处理,以Silva数据库作为OTU分类参考,使用R语言进一步处理数据。

    表  1  肠道菌群16S rDNA基因V3~4扩增流程
    Table  1.  Amplification process of 16S rDNA V3-4 region in gut microbiota
     Stage Step Number of Repetitions Temperature Time
    1 Predegeneration 1 95℃ 5 min
    2 Thermocycling 20 95℃ 45 s
    55℃ 30 s
    72℃ 30 s
    3 Final extension 1 72℃ 10 min
    下载: 导出CSV 
    | 显示表格

    采用SPSS 22.0、Graphpad Prism 8.0以及R 3.4.4版本进行统计分析与作图。正态分布的计量资料以$ \bar{x}\pm s $表示,两组比较采用独立样本t检验,多组比较采用单因素方差分析;非正态分布的计量资料以MP25P75)表示,两组比较采用Mann-Whitney U检验,多组比较采用多独立样本非参数检验。同一指标不同时间点比较,采用配对样本t检验或两样本Wilcoxon秩和检验。计数资料以 n(%)表示,组间比较采用χ2检验。采用Spearman检验分析肠道菌群丰度与NK细胞CX3CR1 表达量的相关性。检验水准(α)为0.05。

    共收集58份粪便及血样本。结果(表2)显示:脓毒症组和对照组的年龄[60.00(44.75, 65.75)岁 vs 52(43.25,57.50)岁,P=0.061]、性别[男性:20(83.33%) vs 7(70.00%),P=0.330]差异无统计学意义。24例脓毒症患者均有明确的感染病灶,其中21例(87.50%)为肺部感染。19例患者有明确的致病菌,其中8例(42.11%)为肺炎克雷伯菌感染。7例死亡患者均为男性,且均为肺部感染(1例合并血流感染),其中5例为肺炎克雷伯菌感染。24例脓毒症患者均使用广谱抗生素,其中排名前3位的是美罗培南(87.50%)、莫西沙星(54.17%)、头孢哌酮舒巴坦(50.00%)及替加环素(50.00%)。结果(表3)显示:与入院当天相比,脓毒症患者入院第4天的白细胞计数减少、CRP水平下降、单核细胞计数增加(P<0.05)。

    表  2  脓毒症患者感染及用药情况
    Table  2.  Infection characteristics and antibiotic use in sepsis patients n=24
     Index n(%)
    28-day mortality 7(29.17)
    Infection site
     Lung 21(87.50)
     Bloodstream 2(8.33)
     Abdomen 2(8.33)
    Infection pathogena
     Klebsiella pneumoniae 8(42.11)
     Baumanii 5(26.32)
     Candida albicans 5(26.32)
     Mycoplasma 1(5.26)
     Haemophilus influenzae 1(5.26)
    Antibioticb
     Meropenem 21(87.50)
     Moxifloxacin 13(54.17)
     Cefperazone-sulbactam 12(50.00)
     Tigecycline 12(50.00)
     Fluconazole 9(37.50)
     Vancomycin 8(33.33)
     Sulfamethoxazole 7(29.17)
     Levofloxacin 7(29.17)
     Linezolid 6(25.00)
     Ceftazidime 4(16.67)
     Cefepime 4(16.67)
      aPathogenic bacteria were detected in a total of 19 patients. bThe top 10 antibiotics used in the treatment.
    下载: 导出CSV 
    | 显示表格
    表  3  脓毒症患者入院当天与第4天临床、实验室指标差异
    Table  3.  Comparison of clinical and laboratorial indices between admission day and the fourth day of hospitalization in sepsis patients
     Index Admission day (n=24) Fourth day (n=24) P
    SOFA score 5.50(2.25, 8.75) 5.50(2.00, 9.75) 0.127
    APACHEⅡscore 15.92±9.91 16.33±15.31 0.832
    WBC/(×109·mL﹣1) 8.80(5.45, 10.50) 6.30(3.00, 10.30) 0.013
    Lymphocyte count/(×109·mL﹣1) 0.70(0.35, 1.00) 0.70(0.40, 1.20) 0.031
    Monocyte count/(×109·mL﹣1) 0.40(0.27, 0.68) 0.50(0.30, 0.90) <0.001
    T cells/% 67.10(49.90, 71.70) 63.20(59.60, 78.20) 0.594
    B cells/% 15.60(12.60, 22.60) 17.30(10.40, 32.70) 0.929
    NK cells/% 14.00(8.90, 23.60) 12.70(7.00, 19.00) 0.657
    T cell number/(×109·mL﹣1) 321.00(133.00, 615.00) 334.00(108.00, 710.00) 0.594
    B cell number/(×109·mL﹣1) 87.00±57.94 97.91±51.52 0.516
    NK cell number/(×109·mL﹣1) 97.11±80.13 69.00±47.19 0.888
    CRP/(mg·L﹣1) 144.90(38.90, 261.70) 48.60(16.50, 97.20) 0.007
    TNF-α/(pg·L﹣1) 14.90(9.20, 33.70) 11.50(7.08, 19.20) 0.555
    IL-1β/(pg·L﹣1) 5.00(5.00, 5.00) 5.00(5.00, 7.28) 0.441
    IL-2R/(pg·L﹣1) 1 100.00(562.00, 1 931.00) 1 263.50(456.25, 1 615.25) 0.332
    IL-6/(pg·L﹣1) 43.00(10.00, 73.10) 21.55(7.35, 44.50) 0.274
    IL-8/(pg·L﹣1) 35.00(11.00, 87.00) 41.00(12.00, 65.50) 0.984
    IL-10/(pg·L﹣1) 7.60(5.00, 32.80) 8.65(5.25, 32.38) 0.816
      SOFA: sequential organ failure assessment; APACHE Ⅱ: Acute Physiology and Chronic Health Evaluation Ⅱ; WBC: white blood cell; CRP: C-reactive protein; TNF-α: tumor necrosis factor-α; IL: interleukin.
    下载: 导出CSV 
    | 显示表格

    16S rDNA测序发现,脓毒症患者肠道菌群数量及Shannon多样性指数随疾病进程下降,提示肠道菌群物种多样性不断降低(图2A2D)。主成分分析(PCA,图2E)显示,健康对照组、脓毒症组第1天和脓毒症组第4天的肠道菌群分布差异显著,区分度达32.47%。在肠道菌群门(phylum)层面上(图2F),与健康对照组相比,脓毒症患者厚壁菌门(Firmicutes)占比明显降低;与入院第1天相比,脓毒症患者第4天的变形菌门(Proteobacteria)占比升高。

    图  2  脓毒症患者肠道菌群丰度及门层面变化
    Figure  2.  Changes of the richness and phylum level of gut microbiota in sepsis patients
    A-D: Analysis on gut microbiota diversty of OTU number, ACE number, Chaos number and Shannon diversity; E: Principal component analysis; F: Mean proportions of the phylum composition. **P<0.01, ***P<0.001 vs healthy control group;P<0.05 vs sepsis day1.

    进一步在属(genus)层面上分析肠道菌群,并列举排名前10位者,结果(图3)显示:与健康对照组相比,脓毒症组入院时粪便标本肠球菌属(Enterococcus)含量增加(P<0.01);随着疾病进程与广谱抗生素的使用,脓毒症组入院第4天的粪便标本中,肠球菌属占比进一步升高,高于入院第1天(P<0.05),克雷伯菌属(Klebsiella)占比高于健康对照与入院第1天(P<0.05)。

    图  3  脓毒症患者肠道菌群属层面变化
    Figure  3.  Changes of genus level of gut microbiota in sepsis patients
    *P<0.05, **P<0.01, ***P<0.001 vs healthy control group; P<0.05 vs sepsis day1.

    结果(图4)显示:与健康对照组相比,脓毒症组入院第1天外周血NK细胞CX3CR1 mRNA表达量有降低趋势,差异无统计学意义;脓毒症患者第4天CX3CR1 mRNA表达量低于健康对照组(P<0.001)和入院第1天(P<0.001)。

    图  4  脓毒症患者外周血NK细胞CX3CR1 mRNA表达量变化
    Figure  4.  Changes of the mRNA expression of CX3CR1 in natural killer cells isolated from peripheral blood mononuclear cells in sepsis patients
    *P<0.05, ***P<0.001.

    根据入院28 d预后将脓毒症患者分为死亡组(n=7)和存活组(n=17),结果显示:两亚组入院第1天的CX3CR1 mRNA表达量差异无统计学意义,入院第4天死亡组外周血NK细胞CX3CR1 mRNA表达量低于存活组(P<0.05)。

    Spearman相关性分析(图5)显示:脓毒症患者外周血NK细胞CX3CR1 mRNA表达量与脓毒症患者肠道菌群OTU数量(r=0.388, P=0.003)、ACE数量(r=0.418, P=0.001)、Chaos数量(r=0.394, P=0.002)以及Shannon多样性指数(r=0.419, P=0.001)正相关。

    图  5  肠道菌群丰度与NK细胞CX3CR1 mRNA表达量的Spearman相关性分析
    Figure  5.  Spearman correlation between CX3CR1 expression with gut microbiota richness

    肠道菌群丰度降低、克雷伯菌属及肠球菌属增加,均是致病菌肠外易位引起继发性肺部、血流及尿路感染的高危因素[16, 19]。肠道菌群对宿主的内环境稳态和免疫细胞活性起重要作用。肠道菌群可以直接与外源性菌群竞争营养物质[20],并可以直接产生针对非定植菌的抗菌肽[21],分泌对抗外源菌的胆汁酸盐,还可以增加黏膜细胞分泌物的产生,进而维持肠道黏膜的完整性[22]。此外,肠道菌群代谢产物短链脂肪酸可以通过抑制组蛋白去乙酰化酶,改变巨噬细胞的数量与功能[23]。本研究中,脓毒症患者肠道菌群发生显著变化、多样性降低,且Shannon多样性指数与患者PBMC中NK细胞CX3CR1表达量正相关,提示肠道菌群可能直接或间接通过代谢物影响免疫细胞的功能。

    在单核细胞丰富的肠道,肠道固有层淋巴细胞依赖CX3CR1形成可以跨上皮的突触,直接接触病原体[24]。CX3CR1还可以诱导巨噬细胞形成淋巴结三级结构,促进IgA的分泌,从而增强黏膜屏障功能[25]。一项来自美国的多中心前瞻性研究[26]发现,脓毒症患者第1天和第3天PBMC中CX3CR1 mRNA表达水平下降,且其表达水平与脓毒症患者死亡率负相关。本研究中,脓毒症患者PBMC中NK细胞CX3CR1表达量随疾病发展呈降低趋势,脓毒症死亡患者入院第4天的CX3CR1表达量低于存活患者,与上述研究结果一致。本研究探讨脓毒症患者PBMC中NK细胞CX3CR1的表达量变化,为后续进一步探讨影响CX3CR1表达量的关键因素提供了思路。此外,CX3CR1在NK细胞上广泛表达,有研究[13]发现,CX3CR1NK细胞较CX3CR1-/lowNK细胞有更高的细胞毒性、更高的成熟度以及更强的细胞因子分泌能力,提示CX3CR1NK细胞在脓毒症进展过程中可能发挥与免疫调节及耐受密切相关的功能。

    本研究存在一定局限性:(1)由于单中心收集样本,以及严格的纳入、排除标准,纳入样本量较少,结论可能存在一定偏倚;(2)尽管已论证肠道菌群与CX3CR1表达量相关,但其因果关系以及是否存在中介因素,仍需进一步研究。

    综上所述,本研究揭示了脓毒症患者PBMC中NK细胞CX3CR1表达量的变化及与其对患者预后的影响,表明CX3CR1表达量与肠道菌群密切相关,降低时患者预后可能不佳。本研究为进一步探讨肠道菌群对脓毒症免疫调节的影响提供了新的思路和依据。

    伦理声明 本研究获得复旦大学附属中山医院伦理委员会审批(B2020-016R)。所有入组患者签署入院知情同意书、生物样本及健康相关信息捐赠知情同意书;入组志愿者签署生物样本及信息捐赠知情同意书。

    利益冲突 所有作者声明不存在利益冲突。

    作者贡献 穆素成:实施研究,资料收集,数据统计,撰写论文;孙湛:资料收集,修改论文;宋振举:设计课题,指导研究,修改论文。

  • 图  1   流式细胞仪鉴定外周血单个核细胞中自然杀伤细胞的纯度

    Figure  1.   Identify of the purity of natural killer cells from peripheral blood mononuclear cells by flow cytometry

    图  2   脓毒症患者肠道菌群丰度及门层面变化

    Figure  2.   Changes of the richness and phylum level of gut microbiota in sepsis patients

    A-D: Analysis on gut microbiota diversty of OTU number, ACE number, Chaos number and Shannon diversity; E: Principal component analysis; F: Mean proportions of the phylum composition. **P<0.01, ***P<0.001 vs healthy control group;P<0.05 vs sepsis day1.

    图  3   脓毒症患者肠道菌群属层面变化

    Figure  3.   Changes of genus level of gut microbiota in sepsis patients

    *P<0.05, **P<0.01, ***P<0.001 vs healthy control group; P<0.05 vs sepsis day1.

    图  4   脓毒症患者外周血NK细胞CX3CR1 mRNA表达量变化

    Figure  4.   Changes of the mRNA expression of CX3CR1 in natural killer cells isolated from peripheral blood mononuclear cells in sepsis patients

    *P<0.05, ***P<0.001.

    图  5   肠道菌群丰度与NK细胞CX3CR1 mRNA表达量的Spearman相关性分析

    Figure  5.   Spearman correlation between CX3CR1 expression with gut microbiota richness

    表  1   肠道菌群16S rDNA基因V3~4扩增流程

    Table  1   Amplification process of 16S rDNA V3-4 region in gut microbiota

     Stage Step Number of Repetitions Temperature Time
    1 Predegeneration 1 95℃ 5 min
    2 Thermocycling 20 95℃ 45 s
    55℃ 30 s
    72℃ 30 s
    3 Final extension 1 72℃ 10 min
    下载: 导出CSV

    表  2   脓毒症患者感染及用药情况

    Table  2   Infection characteristics and antibiotic use in sepsis patients n=24

     Index n(%)
    28-day mortality 7(29.17)
    Infection site
     Lung 21(87.50)
     Bloodstream 2(8.33)
     Abdomen 2(8.33)
    Infection pathogena
     Klebsiella pneumoniae 8(42.11)
     Baumanii 5(26.32)
     Candida albicans 5(26.32)
     Mycoplasma 1(5.26)
     Haemophilus influenzae 1(5.26)
    Antibioticb
     Meropenem 21(87.50)
     Moxifloxacin 13(54.17)
     Cefperazone-sulbactam 12(50.00)
     Tigecycline 12(50.00)
     Fluconazole 9(37.50)
     Vancomycin 8(33.33)
     Sulfamethoxazole 7(29.17)
     Levofloxacin 7(29.17)
     Linezolid 6(25.00)
     Ceftazidime 4(16.67)
     Cefepime 4(16.67)
      aPathogenic bacteria were detected in a total of 19 patients. bThe top 10 antibiotics used in the treatment.
    下载: 导出CSV

    表  3   脓毒症患者入院当天与第4天临床、实验室指标差异

    Table  3   Comparison of clinical and laboratorial indices between admission day and the fourth day of hospitalization in sepsis patients

     Index Admission day (n=24) Fourth day (n=24) P
    SOFA score 5.50(2.25, 8.75) 5.50(2.00, 9.75) 0.127
    APACHEⅡscore 15.92±9.91 16.33±15.31 0.832
    WBC/(×109·mL﹣1) 8.80(5.45, 10.50) 6.30(3.00, 10.30) 0.013
    Lymphocyte count/(×109·mL﹣1) 0.70(0.35, 1.00) 0.70(0.40, 1.20) 0.031
    Monocyte count/(×109·mL﹣1) 0.40(0.27, 0.68) 0.50(0.30, 0.90) <0.001
    T cells/% 67.10(49.90, 71.70) 63.20(59.60, 78.20) 0.594
    B cells/% 15.60(12.60, 22.60) 17.30(10.40, 32.70) 0.929
    NK cells/% 14.00(8.90, 23.60) 12.70(7.00, 19.00) 0.657
    T cell number/(×109·mL﹣1) 321.00(133.00, 615.00) 334.00(108.00, 710.00) 0.594
    B cell number/(×109·mL﹣1) 87.00±57.94 97.91±51.52 0.516
    NK cell number/(×109·mL﹣1) 97.11±80.13 69.00±47.19 0.888
    CRP/(mg·L﹣1) 144.90(38.90, 261.70) 48.60(16.50, 97.20) 0.007
    TNF-α/(pg·L﹣1) 14.90(9.20, 33.70) 11.50(7.08, 19.20) 0.555
    IL-1β/(pg·L﹣1) 5.00(5.00, 5.00) 5.00(5.00, 7.28) 0.441
    IL-2R/(pg·L﹣1) 1 100.00(562.00, 1 931.00) 1 263.50(456.25, 1 615.25) 0.332
    IL-6/(pg·L﹣1) 43.00(10.00, 73.10) 21.55(7.35, 44.50) 0.274
    IL-8/(pg·L﹣1) 35.00(11.00, 87.00) 41.00(12.00, 65.50) 0.984
    IL-10/(pg·L﹣1) 7.60(5.00, 32.80) 8.65(5.25, 32.38) 0.816
      SOFA: sequential organ failure assessment; APACHE Ⅱ: Acute Physiology and Chronic Health Evaluation Ⅱ; WBC: white blood cell; CRP: C-reactive protein; TNF-α: tumor necrosis factor-α; IL: interleukin.
    下载: 导出CSV
  • [1]

    CHEN A X, SIMPSON S Q, PALLIN D J. Sepsis guidelines[J]. N Engl J Med, 2019, 380(14): 1369-1371. DOI: 10.1056/NEJMclde1815472

    [2]

    RUDD K E, JOHNSON S C, AGESA K M, et al. Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J]. Lancet, 2020, 395(10219): 200-211. DOI: 10.1016/S0140-6736(19)32989-7

    [3]

    LIU D, HUANG S Y, SUN J H, et al. Sepsis-induced immunosuppression: mechanisms, diagnosis and current treatment options[J]. Mil Med Res, 2022, 9(1): 56.

    [4]

    LASKOWSKI T J, BIEDERSTÄDT A, REZVANI K. Natural killer cells in antitumour adoptive cell immunotherapy[J]. Nat Rev Cancer, 2022, 22(10): 557-575. DOI: 10.1038/s41568-022-00491-0

    [5]

    DARDEN D B, DONG X R, BRUSKO M A, et al. A novel single cell RNA-seq analysis of non-myeloid circulating cells in late sepsis[J]. Front Immunol, 2021, 12: 696536. DOI: 10.3389/fimmu.2021.696536

    [6]

    MARQUARDT N, KEKÄLÄINEN E, CHEN P R, et al. Human lung natural killer cells are predominantly comprised of highly differentiated hypofunctional CD69-CD56dim cells[J]. J Allergy Clin Immunol, 2017, 139(4): 1321-1330. e4.

    [7]

    LEONARDI I, LI X, SEMON A, et al. CX3CR1+ mononuclear phagocytes control immunity to intestinal fungi[J]. Science, 2018, 359(6372): 232-236. DOI: 10.1126/science.aao1503

    [8]

    CHOUSTERMAN B G, BOISSONNAS A, POUPEL L, et al. Ly6Chigh monocytes protect against kidney damage during sepsis via a CX3CR1-dependent adhesion mechanism[J]. J Am Soc Nephrol, 2016, 27(3): 792-803. DOI: 10.1681/ASN.2015010009

    [9]

    SCIUMÈ G, ANGELIS G D, BENIGNI G, et al. CX3CR1 expression defines 2 KLRG1+ mouse NK-cell subsets with distinct functional properties and positioning in the bone marrow[J]. Blood, 2011, 117(17): 4467-4475. DOI: 10.1182/blood-2010-07-297101

    [10]

    HAMANN I, UNTERWALDER N, CARDONA A E, et al. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells[J]. Immunology, 2011, 133(1): 62-73. DOI: 10.1111/j.1365-2567.2011.03409.x

    [11]

    HUANG D R, SHI F D, JUNG S, et al. The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system[J]. FASEB J, 2006, 20(7): 896-905. DOI: 10.1096/fj.05-5465com

    [12]

    JIANG P L, JIA H Y, QIAN X Y, et al. Single-cell RNA sequencing reveals the immunoregulatory roles of PegIFN-α in patients with chronic hepatitis B[J]. Hepatology, 2024, 79(1): 167-182. DOI: 10.1097/HEP.0000000000000524

    [13]

    KONDO Y, KIMURA O, TANAKA Y, et al. Differential expression of CX3CL1 in hepatitis B virus-replicating hepatoma cells can affect the migration activity of CX3CR1+ immune cells[J]. J Virol, 2015, 89(14): 7016-7027. DOI: 10.1128/JVI.00716-15

    [14]

    PATEL A, JAGADESHAM V P, PORTER K E, et al. Characterisation of fractalkine/CX3CL1 and fractalkine receptor (CX3CR1) expression in abdominal aortic aneurysm disease[J]. Eur J Vasc Endovasc Surg, 2008, 36(1): 20-27. DOI: 10.1016/j.ejvs.2008.01.014

    [15]

    HAAK B W, WIERSINGA W J. The role of the gut microbiota in sepsis[J]. Lancet Gastroenterol Hepatol, 2017, 2(2): 135-143. DOI: 10.1016/S2468-1253(16)30119-4

    [16]

    MU S C, XIANG H, WANG Y Z, et al. The pathogens of secondary infection in septic patients share a similar genotype to those that predominate in the gut[J]. Crit Care, 2022, 26(1): 68. DOI: 10.1186/s13054-022-03943-z

    [17]

    LONG X Y, MU S C, ZHANG J, et al. Global signatures of the microbiome and metabolome during hospitalization of septic patients[J]. Shock, 2023, 59(5): 716-724. DOI: 10.1097/SHK.0000000000002117

    [18]

    SHANKAR-HARI M, PHILLIPS G S, LEVY M L, et al. Developing a new definition and assessing new clinical criteria for septic shock: for the third international consensus definitions for sepsis and septic shock (sepsis-3)[J]. JAMA, 2016, 315(8): 775-787. DOI: 10.1001/jama.2016.0289

    [19]

    UBEDA C, TAUR Y, JENQ R R, et al. Vancomycin-resistant Enterococcus domination of intestinal microbiota is enabled by antibiotic treatment in mice and precedes bloodstream invasion in humans[J]. J Clin Invest, 2010, 120(12): 4332-4341. DOI: 10.1172/JCI43918

    [20]

    WALKER A W, INCE J, DUNCAN S H, et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota[J]. ISME J, 2011, 5(2): 220-230. DOI: 10.1038/ismej.2010.118

    [21]

    BRANDL K, PLITAS G, SCHNABL B, et al. MyD88-mediated signals induce the bactericidal lectin RegⅢ gamma and protect mice against intestinal Listeria monocytogenes infection[J]. J Exp Med, 2007, 204(8): 1891-1900. DOI: 10.1084/jem.20070563

    [22]

    KIM S, COVINGTON A, PAMER E G. The intestinal microbiota: antibiotics, colonization resistance, and enteric pathogens[J]. Immunol Rev, 2017, 279(1): 90-105. DOI: 10.1111/imr.12563

    [23]

    SCHULTHESS J, PANDEY S, CAPITANI M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages[J]. Immunity, 2019, 50(2): 432-445. e7.

    [24]

    NIESS J H, BRAND S, GU X B, et al. CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance[J]. Science, 2005, 307(5707): 254-258. DOI: 10.1126/science.1102901

    [25]

    KOSCSÓ B, KURAPATI S, RODRIGUES R R, et al. Gut-resident CX3CR1hi macrophages induce tertiary lymphoid structures and IgA response in situ[J]. Sci Immunol, 2020, 5(46): eaax0062. DOI: 10.1126/sciimmunol.aax0062

    [26]

    FRIGGERI A, CAZALIS M A, PACHOT A, et al. Decreased CX3CR1 messenger RNA expression is an independent molecular biomarker of early and late mortality in critically ill patients[J]. Crit Care, 2016, 20(1): 204. DOI: 10.1186/s13054-016-1362-x

图(5)  /  表(3)
计量
  • 文章访问数:  1352
  • HTML全文浏览量:  58
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-10-25
  • 录用日期:  2024-11-14
  • 网络出版日期:  2024-11-20
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回