Thyroid dosimetry evaluation of two intensity-modulated radiotherapy techniques after modified radical mastectomy for breast cancer
-
摘要:目的
比较左乳腺癌改良根治术后调强放疗(IMRT)和容积旋转调强放疗(VMAT)中甲状腺辐射剂量学特点。
方法选择2021年12月至2023年5月在上海交通大学医学院附属第九人民医院黄浦分院放疗科接受左乳腺癌改良根治术后辅助放疗的30例患者,分别采用IMRT和VMAT,靶区处方剂量均为50 Gy/25次。比较2种计划的靶区剂量学参数,以及危及器官剂量体积限量(Vx,x表示受照剂量)和平均剂量(Dmean)等。
结果VMAT靶区适形度优于IMRT(P<0.001)。与VMAT相比,IMRT中心脏V5、V10、Dmean和右肺V5、右侧乳腺Dmean较小,左肺V20较大(P<0.001)。IMRT与VMAT中左侧甲状腺V5、V10差异无统计学意义;IMRT中左侧甲状腺及全甲状腺V20、V30、V40、Dmean和右侧甲状腺V10、Dmean均小于VMAT(P<0.001)。
结论IMRT和VMAT技术均能满足临床辐射剂量学要求,其中采用IMRT患者的甲状腺受照剂量更小,且IMRT更适用于心脏条件要求高的患者。
Abstract:ObjectiveTo compare the dosimetric characteristics of thyroid between intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) in patients with left-sided breast cancer after modified radical mastectomy.
MethodsThirty patients with left-sided breast cancer who underwent adjuvant radiotherapy after modified radical mastectomy at the Huangpu Branch of the Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, from December 2021 to May 2023, were selected as the study subjects, and IMRT and VMAT were used with a target prescription dose of 50 Gy/25 times. The target dose parameters of the two plans, including the mean dose (Dmean) and the dose-volume limit for organs at risk (Vx, x represents dose), were compared.
ResultsThe conformity index of VMAT was higher than that of IMRT (P<0.001). Compared with VMAT, IMRT plan significantly reduced the V5、V10、Dmean of heart, the V5 of right lung and the Dmean of right breast, while it significantly increased the V20 of left lung (P<0.001). There was no statistically significant difference in V5 and V10 of the left thyroid between IMRT and VMAT. However, the V20, V30, V40, and Dmean of left and whole thyroid, and the V10 and Dmean of right thyroid were significantly lower in IMRT than those in VMAT (P<0.001).
ConclusionsBoth IMRT and VMAT plans can meet the clinical dosimetric requirements, among which IMRT has lower thyroid exposure dose and is more suitable for patients with high cardiac requirements.
-
调强放疗(intensity-modulated radiotherapy, IMRT)是目前乳腺癌根治术后放疗的常用技术,其在确保靶区适形度和均匀性的前提下,较三维适形放疗(three-dimensional conformal radiotherapy, 3D-CRT)能进一步降低正常组织(如肺、心脏)的受照剂量[1]。容积旋转调强放疗(volumetric modulated arc therapy,VMAT)是一种更高效的形式,近年来应用逐渐增多。
对于乳腺癌根治术后腋窝淋巴结转移的患者,常需要照射锁骨上区。由于锁骨上靶区毗邻甲状腺,患者接受锁骨上靶区照射后甲状腺功能减退风险增加[2-3]。因此,甲状腺作为危及器官(organ at risk, OAR),乳腺癌根治术后放疗中须慎重考虑其受照剂量。IMRT和VMAT对OAR的保护各具优势[4-6],但目前国内外对两种计划治疗过程中甲状腺辐射剂量学相关研究很少。因此,本研究旨在比较IMRT和VMAT中甲状腺剂量学特点,为临床实践中更好地保护乳腺癌放疗OAR提供依据。
1. 资料与方法
1.1 一般资料
回顾性选择于2021年12月至2023年5月在上海交通大学医学院附属第九人民医院黄浦分院放疗科接受左乳腺癌改良根治术后辅助放疗的30例患者作为研究对象。患者年龄为38~68岁,中位年龄为51(47.8, 58.3)岁。纳入标准:(1)经病理诊断为浸润性乳腺癌,分期为pT1~3N2~3M0;(2)均接受乳腺癌改良根治术,未行乳房重建手术;(3)无放疗禁忌证,Karnofsky功能状态评分>90分。排除标准:(1)右侧或双侧乳腺癌;(2)乳腺癌复发再治疗;(3)有甲状腺疾病或既往甲状腺手术史。
1.2 CT检查
所有患者均借助体位固定装置Civco P109444-PSR-2C-30臂托按治疗体位固定。采用荷兰飞利浦公司Brilliance 16排大孔径CT模拟定位机扫描定位,扫描范围为头端至舌骨体平面、尾端至上腹部,层厚5 mm,连续扫描。完成放疗定位后,将图像传输到Eclipse 11.0治疗计划系统。
1.3 靶区和OAR勾画
参考美国放射治疗肿瘤协作组(RTOG)指南[7],由同一位临床经验丰富的放疗科医生在CT图像上完成靶区及OAR的勾画。全甲状腺勾画区域包括甲状腺左、右叶及峡部;肿瘤临床靶区(clinical target volume, CTV)包括患侧胸壁,锁骨上、下区及内乳淋巴结区域;在CTV基础上,向前、后、内、外各外扩5 mm,上、下界各外扩1 cm,勾画计划靶区(planning target volume, PTV)。其中,后界除内乳区附近外不包括肺组织,胸壁前界包括皮肤。
1.4 放疗计划设计
通过Eclipse治疗计划系统用每例患者的同一套CT图像设计IMRT和VMAT计划,靶区处方剂量为50 Gy/25次。根据各个射野方向、靶区形状沿靶区长轴设置相同中心点,并采用相同函数进行优化。所有计划均采用6 mV X射线,实施时,皮肤表面覆盖0.5 cm厚补偿膜。
1.4.1 IMRT
采用7野逆向动态调强,射野角度为2个切线野、1个0°野,另外4个射野由上、下方切线野分别增加和减小10°~20°生成。计划系统剂量率选取400 mU/min,剂量计算网格选取2.5 mm。
1.4.2 VMAT
采用双弧照射技术,在常规切线野角度±60°范围内顺时针或逆时针旋转照射,最大剂量率为600 mU/min。剂量采用各向异性分析算法(anisotropic analytical algorithm, AAA)计算,并通过勾画剂量成形结构(dose shaping structure, DSS)优化剂量热点与冷点。
1.5 计划评估
放疗计划完成后,对靶区剂量学参数进行评价。用靶区适形指数(conformity index, CI)评估靶区适形度。D95%表示95% PTV接受的最低剂量;V110%表示接受大于110%处方剂量照射的区域(剂量热点区域)。记录平均剂量(Dmean)和靶区均匀性指数(homogeneity index, HI),其中,HI=D5%/D95%。为了统一评价,所有PTV剂量体积直方图(dose and volume histogram, DVH)归一到95%靶区体积达到处方剂量。设置全甲状腺Dmean<30 Gy[8]。其他OAR剂量体积限量(Vx)定义为接受一定剂量(x)照射的器官体积比:患侧肺V20<30%、Dmean<15 Gy,健侧肺V5<20%,心脏V5<40%、Dmean<8 Gy,健侧乳腺Dmean<5 Gy。
1.6 统计学处理
采用SPSS 19.0统计软件处理数据,服从正态分布的连续变量以$\bar x \pm s $表示,组间比较进行配对t检验;不符合正态分布的数据以M(P25, P75)表示,组间比较采用秩和检验。检验水准(α)为0.05。
2. 结 果
2.1 靶区辐射剂量学特点
结果(表1)显示:VMAT靶区适形度优于IMRT(P<0.001);两种PTV的HI、D95%、Dmean和V110%差异均无统计学意义。患者锁骨上靶区同一横断面的剂量分布图(图1)显示:VMAT和IMRT在95%处方剂量时的覆盖范围相近。
表 1 两种放疗计划的靶区辐射剂量学特点比较Table 1. Dosimetric comparison of the 2 radiation treatment plans for targetsn=30 Parameter IMRT VMAT t P CI 0.656±0.793 0.792±0.059 ﹣13.950 <0.001 HI 0.121±0.007 0.115±0.015 1.952 0.061 D95%/Gy 50.192±0.477 50.104±0.353 1.328 0.195 Dmean/Gy 52.006±0.824 52.143±0.809 ﹣0.810 0.424 V110%/% 1.482±0.603 1.276±0.756 1.485 0.148 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; CI: conformity index; HI: homogeneity index; D95%: the lowest dose received by 95% planning target volume; Dmean: mean dose; V110%: the volume of dose hot spot. 2.2 其他OAR辐射剂量学特点
结果(表2)显示:两种放疗计划的OAR辐射剂量学参数均满足临床要求。接受IMRT患者的心脏V5、V10、Dmean,健侧乳腺Dmean,健侧肺V5小于接受VMAT患者(P<0.001),患侧肺V20大于接受VMAT患者(P<0.001)。两种计划患侧肺Dmean差异无统计学意义。
表 2 两种放疗计划中危及器官辐射剂量学参数比较Table 2. Dosimetric comparison of 2 radiation treatment plans for organs at riskn=30 Parameter IMRT VMAT t P Left lung V20/% 24.72±1.51 23.11±1.51 ﹣8.819 <0.001 Dmean/Gy 13.37±0.78 13.56±0.88 ﹣1.184 0.246 Right lung V5/% 15.69±1.58 17.07±1.78 ﹣7.470 <0.001 Heart V5/% 25.01±4.56 33.04±4.72 ﹣13.467 <0.001 V10/% 13.77±2.35 21.01±2.04 ﹣17.715 <0.001 V20/% 6.72±1.00 6.93±1.17 ﹣1.753 0.090 V30/% 4.66±0.92 4.75±0.99 ﹣0.462 0.648 V40/% 2.75±1.01 2.48±1.00 1.979 0.057 Dmean/Gy 5.74±1.05 6.88±0.61 ﹣11.345 <0.001 Right breast Dmean/Gy 2.49±0.88 3.28±0.87 ﹣5.044 <0.001 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; Dmean: mean dose; V5, 10, 20, 30, 40: the volume irradiated with 5, 10, 20, 30, 40 Gy, respectively. 2.3 甲状腺辐射剂量学特点比较
患者甲状腺体积为5.03~23.52 cm3,平均体积为(11.40±0.96)cm3。结果(表3)显示:接受IMRT患者患侧甲状腺V20、V30、V40和Dmean,健侧甲状腺V10、Dmean和全甲状腺V10、V20、V30、V40和Dmean均小于接受VMAT患者(P<0.001)。无接受IMRT患者甲状腺受照剂量大于26 Gy;接受VMAT患者中甲状腺受照剂量大于26 Gy者占23.3%(7/30)。接受IMRT患者甲状腺V30均小于50%。DVH结果(图2)显示:同一辐射剂量时,VMAT计划的甲状腺Vx大于IMRT计划。
表 3 两种放疗计划的甲状腺辐剂量学参数比较Table 3. Dosimetric comparison of 2 radiation treatment plans for thyroidn=30 Parameter IMRT VMAT t P Left thyroid V5/% 100.00 100.00 V10/% 99.93±0.22 100.00 ﹣1.821 0.079 V20/% 63.91±6.34 73.52±5.10 ﹣8.487 <0.001 V30/% 44.71±5.22 53.03±5.40 ﹣13.783 <0.001 V40/% 26.80±3.47 35.92±9.93 ﹣5.799 <0.001 V50/% 10.52±4.86 10.44±4.80 1.173 0.250 Dmean/Gy 28.67±0.84 29.42±0.53 ﹣5.406 <0.001 Right thyroid V5/% 100.00 100.00 V10/% 5.36±2.66 87.50±5.37 ﹣81.238 <0.001 Dmean/Gy 9.61±1.51 14.23±2.04 ﹣8.824 <0.001 Whole thyroid V5/% 100.00 100.00 V10/% 43.57±7.70 91.46±5.02 ﹣25.666 <0.001 V20/% 23.29±5.55 31.79±6.50 ﹣11.008 <0.001 V30/% 17.69±5.11 23.67±4.82 ﹣6.439 <0.001 V40/% 11.26±2.85 15.70±5.49 ﹣4.828 <0.001 V50/% 4.32±2.03 4.17±1.77 0.666 0.511 Dmean/Gy 19.02±1.84 24.42±2.51 ﹣11.780 <0.001 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; Dmean: mean dose; V5, 10, 20, 30, 40, 50: the volume irradiated with 5, 10, 20, 30, 40, 50 Gy, respectively. 3. 讨 论
放疗是乳腺癌局部治疗的重要手段。已有大型随机研究[9]和荟萃分析[10]证实T3~4或N2~3期乳腺癌改良根治术后行辅助放疗可降低局部复发率,并转化成生存获益。随着生存期延长,乳腺癌患者放疗后的生活质量成为临床关注热点。甲状腺作为人体最大的内分泌腺,其由放疗导致的损伤不容忽视[11]。
Akın等[12]的研究中,乳腺癌术后放疗接受3D-CRT及锁骨上区照射的122例患者的平均甲状腺体积为16.7 cm3,甲状腺平均受照剂量为22.5 Gy;其中接受剂量大于26 Gy的患者占比为44%,认为这部分患者存在放疗后甲状腺功能异常风险。因此,在提高乳腺癌靶区剂量覆盖率和均一性的同时,还应考虑放疗危及甲状腺的潜在风险。不同于IMRT的固定机架角,VMAT可以从切线野的任意一边,沿机架角拉出一定弧度,从而缩短治疗时间[13]。
本研究显示,VMAT具有较IMRT更优的靶区适形度和相近的PTV处方剂量覆盖范围、剂量均匀性,但心脏暴露增加,与以往研究[14-15]结果相似。《乳腺癌放射治疗指南(中国医师协会2020版)》[8]要求评估甲状腺Dmean至少小于30 Gy,本研究中2种计划在此剂量限制下,均达到目标参数要求。IMRT中全甲状腺Dmean为(19.02±1.84)Gy,且无患者接受大于26 Gy的甲状腺辐射剂量;而VMAT计划中全甲状腺Dmean为(24.42±2.51)Gy,其中剂量大于26 Gy者占23.3%,表明IMRT较VMAT能进一步降低甲状腺平均剂量。
除Dmean外,接受甲状腺V10~50辐射剂量也是评估放疗后甲状腺功能减退风险的重要参考因素。Tunio等[16]的前瞻性研究显示,中位随访52个月时,20例乳腺癌术后进行放疗(包含锁骨上区)的患者中,V30>50%者甲状腺功能减退风险增加。此外,有研究[17]认为,V30与促甲状腺激素(thyroid stimulating hormone, TSH)的峰值水平相关。因此,V30对该类患者甲状腺功能异常有潜在预测价值。本研究结果显示,IMRT中左侧及全甲状腺V20~40小于VMAT,且接受IMRT患者的甲状腺V30均小于50%。而且,本研究中,接受VMAT患者的健侧甲状腺受照剂量高于接受IMRT患者,与既往研究[18-19]结果相似,提示VMAT对健侧甲状腺的保护作用不及IMRT。原因可能是IMRT为固定角度切线野照射,可以更好地避开对侧甲状腺、对侧乳腺及肺;而VMAT是以靶区为中心的半弧形动态旋转照射,机架旋转时连续出束,弧内均为照射范围。
本研究中,两种计划的患侧甲状腺V5、V10均达到或接近100%,这可能与计划本身的多射野及锁骨上靶区紧贴甲状腺有关,使散射线、漏射线增多,表明两种计划在低剂量区对甲状腺的保护欠精准。多项研究[20-22]认为,低剂量照射可能增加继发性癌症发生风险。因此,IMRT和VMAT计划的调适能力仍需进一步优化。另有研究[23]显示,甲状腺体积越小,乳腺癌根治患者放疗后甲状腺功能减退发生率越大。这提示甲状腺体积可能也是放疗后甲状腺功能异常的预测因子,精确测量甲状腺体积对评估辐射剂量学分布有重要意义。增强CT扫描中,甲状腺长度3.6~6 cm、宽度1.5~2 cm、深度1~2 cm[24],本研究CT平扫结果与之一致。但是,仍建议勾画甲状腺轮廓前进行增强CT扫描。
对于左侧乳腺癌根治术后放疗,评估心脏放射损伤非常重要。有研究[25]发现,心脏Dmean与缺血性心脏病发病率存在剂量效应关系,减小Dmean可降低由放射性心脏损伤引起的死亡事件风险。van den Bogaard等[26]的回顾性研究纳入910例乳腺癌放疗患者,发现心脏V5是放射性心脏损伤关键影响因素。有关放疗心脏毒性的CSCO指南要求左侧乳腺癌放疗时心脏Dmean<8 Gy、V5<40%[27]。本研究显示,与VMAT相比,IMRT对心脏V5、V10及Dmean控制较好。
综上所述,IMRT和VMAT均能满足临床剂量学要求。IMRT对甲状腺的保护作用总体优于VMAT,且更适合需要心脏保护的患者,但两者低剂量区甲状腺受照体积仍较大,提示有必要优化技术及方案,增强放疗中甲状腺剂量限制。本研究仅涉及常规分割的照射方式,且缺乏甲状腺功能基线和长期随访数据,未来须探讨大分割等模式对甲状腺辐射剂量学参数的影响,同时加强随访,以分析辐射剂量对甲状腺功能的长期影响及IMRT、VMAT优化效果。
伦理声明 本研究经上海交通大学医学院附属第九人民医院黄浦分院伦理委员会批准(2021-KY-2),患者签署知情同意书。
利益冲突 所有作者声明不存在利益冲突。
作者贡献 孙丽云:研究设计、实施,数据分析、文章撰写;沈磊:研究实施;张顺康、卢月:数据收集;陈刚:研究指导、文章修改。
-
表 1 两种放疗计划的靶区辐射剂量学特点比较
Table 1 Dosimetric comparison of the 2 radiation treatment plans for targets
n=30 Parameter IMRT VMAT t P CI 0.656±0.793 0.792±0.059 ﹣13.950 <0.001 HI 0.121±0.007 0.115±0.015 1.952 0.061 D95%/Gy 50.192±0.477 50.104±0.353 1.328 0.195 Dmean/Gy 52.006±0.824 52.143±0.809 ﹣0.810 0.424 V110%/% 1.482±0.603 1.276±0.756 1.485 0.148 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; CI: conformity index; HI: homogeneity index; D95%: the lowest dose received by 95% planning target volume; Dmean: mean dose; V110%: the volume of dose hot spot. 表 2 两种放疗计划中危及器官辐射剂量学参数比较
Table 2 Dosimetric comparison of 2 radiation treatment plans for organs at risk
n=30 Parameter IMRT VMAT t P Left lung V20/% 24.72±1.51 23.11±1.51 ﹣8.819 <0.001 Dmean/Gy 13.37±0.78 13.56±0.88 ﹣1.184 0.246 Right lung V5/% 15.69±1.58 17.07±1.78 ﹣7.470 <0.001 Heart V5/% 25.01±4.56 33.04±4.72 ﹣13.467 <0.001 V10/% 13.77±2.35 21.01±2.04 ﹣17.715 <0.001 V20/% 6.72±1.00 6.93±1.17 ﹣1.753 0.090 V30/% 4.66±0.92 4.75±0.99 ﹣0.462 0.648 V40/% 2.75±1.01 2.48±1.00 1.979 0.057 Dmean/Gy 5.74±1.05 6.88±0.61 ﹣11.345 <0.001 Right breast Dmean/Gy 2.49±0.88 3.28±0.87 ﹣5.044 <0.001 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; Dmean: mean dose; V5, 10, 20, 30, 40: the volume irradiated with 5, 10, 20, 30, 40 Gy, respectively. 表 3 两种放疗计划的甲状腺辐剂量学参数比较
Table 3 Dosimetric comparison of 2 radiation treatment plans for thyroid
n=30 Parameter IMRT VMAT t P Left thyroid V5/% 100.00 100.00 V10/% 99.93±0.22 100.00 ﹣1.821 0.079 V20/% 63.91±6.34 73.52±5.10 ﹣8.487 <0.001 V30/% 44.71±5.22 53.03±5.40 ﹣13.783 <0.001 V40/% 26.80±3.47 35.92±9.93 ﹣5.799 <0.001 V50/% 10.52±4.86 10.44±4.80 1.173 0.250 Dmean/Gy 28.67±0.84 29.42±0.53 ﹣5.406 <0.001 Right thyroid V5/% 100.00 100.00 V10/% 5.36±2.66 87.50±5.37 ﹣81.238 <0.001 Dmean/Gy 9.61±1.51 14.23±2.04 ﹣8.824 <0.001 Whole thyroid V5/% 100.00 100.00 V10/% 43.57±7.70 91.46±5.02 ﹣25.666 <0.001 V20/% 23.29±5.55 31.79±6.50 ﹣11.008 <0.001 V30/% 17.69±5.11 23.67±4.82 ﹣6.439 <0.001 V40/% 11.26±2.85 15.70±5.49 ﹣4.828 <0.001 V50/% 4.32±2.03 4.17±1.77 0.666 0.511 Dmean/Gy 19.02±1.84 24.42±2.51 ﹣11.780 <0.001 IMRT: intensity-modulated radiotherapy; VMAT: volumetric modulated arc therapy; Dmean: mean dose; V5, 10, 20, 30, 40, 50: the volume irradiated with 5, 10, 20, 30, 40, 50 Gy, respectively. -
[1] JAGSI R, GRIFFITH K A, MORAN J M, et al. Comparative effectiveness analysis of 3D-conformal radiation therapy versus intensity modulated radiation therapy (IMRT) in a prospective multicenter cohort of patients with breast cancer[J]. Int J Radiat Oncol Biol Phys, 2022, 112(3): 643-653. DOI: 10.1016/j.ijrobp.2021.09.053
[2] ETTALHAOUI L, DEBREUVE-THÉRESETTE A, NGUYEN T D, et al. Prospective evaluation of radiation-induced thyroid disorders after breast and supraclavicular irradiation[J]. Cancer Radiother, 2023, 27(5): 376-386. DOI: 10.1016/j.canrad.2023.04.005
[3] 程 蕾, 季永领, 杜向慧. 乳腺癌放疗对甲状腺功能影响的研究进展[J]. 肿瘤学杂志, 2018, 24(8): 818-822. CHENG L, JI Y L, DU X H. Research progress of the influence of radiotherapy on thyroid function in patients with breast cancer[J]. Pract Oncol J, 2018, 24(8): 818-822.
[4] ZOPE M K, PATIL D B, FATIMA U, et al. Volumetric-modulated arc therapy versus intensity-modulated radiotherapy on the left-sided chest wall and locoregional nodes irradiation in treating postmastectomy breast cancer patients[J]. J Indira Gandhi Inst Med Sci, 2021, 7(1): 57-63. DOI: 10.4103/jigims.jigims_6_21
[5] JEULINK M, DAHELE M, MEIJNEN P, et al. Is there a preferred IMRT technique for left-breast irradiation?[J]. J Appl Clin Med Phys, 2015, 16(3): 5266.
[6] ALSAIHATY Z, ABDUL MANAN H, SABARUDIN A, et al. Hybrid treatment planning for chest wall irradiation utilizing three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT): a systematic review[J]. Cureus, 2024, 16(5): e59583.
[7] WHITE J, TAI A, ARTHUR D, et al. Breast cancer atlas for radiation therapy planning: consensus definitions[EB/OL]. [2024-09-08]. https://www.onco-hdf.fr/app/uploads/2019/05/BreastCancerAtlas1.pdf.
[8] 中国医师协会放射肿瘤治疗医师分会. 乳腺癌放射治疗指南(中国医师协会2020版)[J]. 中华放射肿瘤学杂志, 2021, 30(4): 321-342. Radiation Oncology Physicians Branch of Chinese Medical Doctor Association. Guidelines for radiotherapy of breast cancer (Chinese Medical Doctor Association 2020 edition)[J]. Chin J Radiat Oncol, 2021, 30(4): 321-342.
[9] Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Radiotherapy to regional nodes in early breast cancer: an individual patient data meta-analysis of 14 324 women in 16 trials[J]. Lancet, 2023, 402(10416): 1991-2003. DOI: 10.1016/S0140-6736(23)01082-6
[10] HENNEQUIN C, BELKACÉMI Y, BOURGIER C, et al. Radiotherapy of breast cancer[J]. Cancer Radiother, 2022, 26(1-2): 221-230. DOI: 10.1016/j.canrad.2021.11.013
[11] SOLMUNDE E, FALSTIE-JENSEN A M, LORENZEN E L, et al. Breast cancer, breast cancer-directed radiation therapy and risk of hypothyroidism: a systematic review and meta-analysis[J]. Breast, 2023, 68: 216-224.
[12] AKıN M, ERGEN A, UNAL A, et al. Irradiation doses on thyroid gland during the postoperative irradiation for breast cancer[J]. J Cancer Res Ther, 2014, 10(4): 942-944. DOI: 10.4103/0973-1482.137991
[13] CHANG J S, CHANG J H, KIM N, et al. Intensity modulated radiotherapy and volumetric modulated arc therapy in the treatment of breast cancer: an updated review[J]. J Breast Cancer, 2022, 25(5): 349-365. DOI: 10.4048/jbc.2022.25.e37
[14] 马长春, 张武哲, 伍方财, 等. 左侧乳腺癌改良根治术后放疗三种技术的比较[J]. 中国医学物理学杂志, 2014, 31(4): 4993-4998. MA C C, ZHANG W Z, WU F C, et al. Dosimetric comparison of post modified radical mastectomy radiotherapy plans using 3 different techniques for left-sided breast cancer[J]. Chin J Med Phys, 2014, 31(4): 4993-4998.
[15] KARPF D, SAKKA M, METZGER M, et al. Left breast irradiation with tangential intensity modulated radiotherapy (t-IMRT) versus tangential volumetric modulated arc therapy (t-VMAT): trade-offs between secondary cancer induction risk and optimal target coverage[J]. Radiat Oncol, 2019, 14(1): 156.
[16] TUNIO M A, ASIRI M A, BAYOUMI Y, et al. Is thyroid gland an organ at risk in breast cancer patients treated with locoregional radiotherapy? Results of a pilot study[J]. J Cancer Res Ther, 2015, 11(4): 684-689. DOI: 10.4103/0973-1482.167613
[17] HACIISLAMOGLU E, CANYILMAZ E, GEDIK S, et al. Effect of dose constraint on the thyroid gland during locoregional intensity-modulated radiotherapy in breast cancer patients[J]. J Appl Clin Med Phys, 2019, 20(7): 135-141. DOI: 10.1002/acm2.12668
[18] 袁美芳, 杨 毅, 赵玉涛, 等. 左乳癌根治术后sIMRT和VMAT对对侧乳腺和对侧肺的剂量学研究[J]. 临床医学研究与实践, 2020, 5(29): 20-22. YUAN M F, YANG Y, ZHAO Y T, et al. Dosimetric study of contralateral breast and contralateral lung with sIMRT and VMAT after radical resection of left breast cancer[J]. Clin Res Pract, 2020, 5(29): 20-22.
[19] REDAPI L, ROSSI L, MARRAZZO L, et al. Comparison of volumetric modulated arc therapy and intensity-modulated radiotherapy for left-sided whole-breast irradiation using automated planning[J]. Strahlenther Onkol, 2022, 198(3): 236-246. DOI: 10.1007/s00066-021-01817-x
[20] XIA C X, QIN L, WANG Y Z, et al. Risk factors and specific cancer types of second primary malignancies in patients with breast cancer receiving adjuvant radiotherapy: a case-control cohort study based on the SEER database[J]. Am J Cancer Res, 2022, 12(6): 2744-2756.
[21] ABO-MADYAN Y, AZIZ M H, ALY M M, et al. Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer[J]. Radiother Oncol, 2014, 110(3): 471-476. DOI: 10.1016/j.radonc.2013.12.002
[22] ASHBY O, BRIDGE P. Late effects arising from volumetric modulated arc therapy to the breast: a systematic review[J]. Radiography, 2021, 27(2): 650-653. DOI: 10.1016/j.radi.2020.08.003
[23] JOHANSEN S, REINERTSEN K V, KNUTSTAD K, et al. Dose distribution in the thyroid gland following radiation therapy of breast cancer—a retrospective study[J]. Radiat Oncol, 2011, 6: 68. DOI: 10.1186/1748-717X-6-68
[24] 赵旭冉, 王淑莲. 乳腺癌术后放疗甲状腺功能减退的研究现状[J]. 中华放射肿瘤学杂志, 2020, 29(9): 804-808. ZHAO X R, WANG S L. Research progress on hypothyroidism after radiotherapy in breast cancer[J]. Chin J Radiat Oncol, 2020, 29(9): 804-808.
[25] STRUIKMANS H, PETOUKHOVA A, SCHREUR J H M, et al. Is the risk of ischemic heart disease in women after radiotherapy for breast cancer nowadays still (linearly) associated with the mean heart dose?[J]. Acta Oncol, 2024, 63: 175-178.
[26] VAN DEN BOGAARD V A B, VAN LUIJK P, HUMMEL Y M, et al. Cardiac function after radiation therapy for breast cancer[J]. Int J Radiat Oncol Biol Phys, 2019, 104(2): 392-400. DOI: 10.1016/j.ijrobp.2019.02.003
[27] 梅 婷, 范 丽, 叶 挺, 等. 2023年CSCO指南更新解读: 放疗相关心脏毒性[J]. 实用肿瘤杂志, 2023, 38(6): 513-518. MEI T, FAN L, YE T, et al. Update and interpretation of 2023 CSCO guidelines for radiation-related cardiotoxicity[J]. J Pract Oncol, 2023, 38(6): 513-518.