高级检索

心脏原位巨噬细胞在小鼠心肌梗死后心脏修复中的作用

贾代乐, 张景洪, 陈圻炘, 胡凯, 孙爱军, 葛均波

贾代乐,张景洪,陈圻炘,等. 心脏原位巨噬细胞在小鼠心肌梗死后心脏修复中的作用[J]. 中国临床医学, 2024, 31(4): 603-611. DOI: 10.12025/j.issn.1008-6358.2024.20240713
引用本文: 贾代乐,张景洪,陈圻炘,等. 心脏原位巨噬细胞在小鼠心肌梗死后心脏修复中的作用[J]. 中国临床医学, 2024, 31(4): 603-611. DOI: 10.12025/j.issn.1008-6358.2024.20240713
JIA D L, ZHANG J H, CHEN Q X, et al. The role of cardiac resident macrophages in heart repair following myocardial infarction in mice[J]. Chin J Clin Med, 2024, 31(4): 603-611. DOI: 10.12025/j.issn.1008-6358.2024.20240713
Citation: JIA D L, ZHANG J H, CHEN Q X, et al. The role of cardiac resident macrophages in heart repair following myocardial infarction in mice[J]. Chin J Clin Med, 2024, 31(4): 603-611. DOI: 10.12025/j.issn.1008-6358.2024.20240713

心脏原位巨噬细胞在小鼠心肌梗死后心脏修复中的作用

基金项目: 国家自然科学基金(82100274),上海市青年科技英才扬帆计划(21YF1405900).
详细信息
    作者简介:

    贾代乐,博士生,助理研究员. E-mail:jia.daile@zs-hospital.sh.cn

    通讯作者:

    孙爱军: Tel:021-64041990, E-mail:sun.aijun@zs-hospital.sh.cn

    葛均波: E-mail:jbge@zs-hospital.sh.cn

  • 中图分类号: R735.7

The role of cardiac resident macrophages in heart repair following myocardial infarction in mice

Funds: Supported by National Natural Science Foundation of China (82100274) and Shanghai Youth Science and Technology Talents Sailing Program (21YF1405900).
  • 摘要:
    目的 

    探讨心脏原位巨噬细胞在小鼠心肌梗死后心脏修复中的作用及其机制。

    方法 

    将巨噬细胞特异性Cre工具鼠(Cx3cr1CreER–YFP小鼠)与双重转基因小鼠(R26tdTomato/DTR小鼠)进行杂交,获得心脏原位巨噬细胞特异性红色荧光标记小鼠。选择60只Cx3cr1CreER–YFP:R26Td/DTR杂交小鼠,随机分为4组:假手术组(Sham组)、白喉毒素+假手术组(DT+Sham组)、心肌梗死模型组(MI组)和白喉毒素+心肌梗死模型组(DT+MI组),每组15只小鼠。MI组和DT+MI组采用结扎冠状动脉左前降支法进行心肌梗死造模,DT+MI组小鼠使用白喉毒素(diphtheria toxin, DT)诱导心脏组织中原位巨噬细胞的缺失,构建心脏原位巨噬细胞敲除模型。小鼠心肌梗死造模第5天,对小鼠心脏组织切片进行苏木精和伊红(H-E)染色,观察炎症浸润情况以及心肌梗死面积;造模第14天,采用超声心动图测定小鼠心功能相关指标,并检测炎性细胞因子mRNA表达水平。

    结果 

    与MI组相比,DT+MI组小鼠心脏原位巨噬细胞明显减少[(53.75±4.62)vs(6.37±1.25), P<0.05]。心肌梗死造模14 d,与MI组相比,DT+MI组小鼠左心室舒张末期内径[(5.11±0.22)mm vs(5.92±0.26)mm, P<0.05]和收缩末期内径[(4.77±0.17)mm vs(5.38±0.16)mm, P<0.05]显著增大,而射血分数显著降低[(27.76±1.20)% vs(17.61±0.94)%,P<0.05];此外,DT+MI组小鼠心脏炎性细胞因子表达水平上升,炎症细胞浸润增加,心肌梗死面积明显增大。DT+MI组小鼠NF-κB/p-P65的蛋白表达水平显著高于MI组[(0.28±0.14)vs(1.09±0.12), P<0.05]。

    结论 

    心脏原位巨噬细胞在心肌梗死后通过减轻炎症细胞浸润和心肌梗死面积,在心肌梗死后心脏组织修复中发挥重要作用。

    Abstract:
    Objective 

    To explore the role and mechanism of cardiac resident macrophages in heart repair after myocardial infarction in mice.

    Methods 

    Macrophage-specific Cre tool mice (CX3CR1CreER–YFP mice) with doubly transgenic mice (R26tdTomato/DTR mice) were hybridized to obtain cardiac resident macrophage-specific red fluorescent labels in mice. Sixty Cx3cr1CreER-YFP:R26Td/DTR hybrid mice were randomly divided into 4 groups: Sham group, DT+Sham group, MI group, and DT+MI group, with 15 mice in each group. MI group and DT+MI group underwent myocardial infarction modeling by ligating the left anterior descending coronary artery. The DT+MI group mice were induced to deplete resident macrophages in the heart tissue using diphtheria toxin (DT) to establish a cardiac resident macrophage knockout model. On the 5th day after myocardial infarction modeling, heart tissue slices of mice were stained with H-E to observe inflammation infiltration and myocardial infarct size were calculated; on the 14th day of modeling, echocardiography was used to measure cardiac function-related parameters in mice, and mRNA expression levels of inflammatory cytokines were detected.

    Results 

    Compared with the MI group, the DT+MI group mice showed a significant reduction in cardiac resident macrophages ([53.75±4.62] vs [6.37±1.25], P<0.05). On the 14th day after myocardial infarction modeling, compared with the MI group, the DT+MI group mice had significantly increased left ventricular end-diastolic diameter ([5.11±0.22] mm vs [5.92±0.26] mm, P<0.05) and left ventricular end-systolic diameter ([4.77±0.17] mm vs [5.38±0.16] mm, P<0.05), while the ejection fraction significantly decreased ([27.76±1.20]% vs [17.61±0.94]%, P<0.05); in addition, the DT+MI group mice showed increased expression levels of inflammatory cytokines, increased inflammatory cell infiltration, and significantly larger myocardial infarct size. The protein expression levels of NF-κB/p-P65 in DT+MI group mice were significantly higher than those in the MI group ([0.28±0.14] vs [1.09±0.12], P<0.05).

    Conclusions 

    Cardiac resident macrophages play an important role in heart tissue repair after myocardial infarction by reducing inflammation cell infiltration and myocardial infarct size.

  • 心肌梗死后心力衰竭是导致心血管疾病发病率和死亡率升高的主要原因之一[1]。随着药理学的发展,β受体阻滞剂、血管紧张素转换酶抑制剂等药物显著降低了急性心肌梗死的死亡率,但心肌梗死诱发心力衰竭的风险仍然很高,且逐年上升[2]。心脏免疫调控是近年来的研究热点,巨噬细胞作为心脏间质中数量最丰富、功能最广泛的免疫细胞,对心脏修复和功能调节至关重要。

    通过遗传谱系示踪、单细胞测序、联体实验和过继转移等生物技术,心脏巨噬细胞群体被逐渐揭示[3-4]。心脏巨噬细胞并非一个同质群体,而是由不同起源和功能的3个亚群组成[5-6],根据主要组织相容性复合体(major histocompatibility complex,MHC)-Ⅱ类和CC趋化因子受体2(C-C chemokine receptor 2,CCR2)的差异,分为CCR2MHC-Ⅱlow、CCR2MHC-Ⅱhigh和CCR2+MHC-Ⅱhigh[7]。高表达MHC-Ⅱ的巨噬细胞(CCR2MHC-Ⅱhigh和CCR2+MHC-Ⅱhigh)具有处理和呈递抗原的功能,在免疫监视中起关键作用。CCR2MHC-Ⅱlow是心脏巨噬细胞的主要亚群,来源于胚胎期卵黄囊,主要通过原位增殖更新,负责吞噬死亡的心肌细胞并促进冠状动脉再生,在心肌梗死后的修复中发挥重要作用。循环单核细胞表达CCR2,这是一种重要的趋化因子受体,富含NLRP3炎性小体的成分。组织损伤后,单核细胞来源的CCR2+MHC-Ⅱhigh巨噬细胞表达高水平的促炎基因,包括与NLRP3炎性小体相关的基因,促进心脏应激期间IL-1β的释放[8]。研究[9-10]发现,通过促进心脏原位巨噬细胞的增殖,同时抑制外周单核细胞聚集,可以改善心肌损伤后的修复重构。因此,探索心脏原位巨噬细胞的具体存活机制、分子谱,及其在心肌梗死后炎症反应及修复过程中的作用,对于心肌梗死后心肌损伤的治疗具有重要意义。

    本研究构建心脏巨噬细胞谱系示踪小鼠模型和敲除模型,分析心脏原位巨噬细胞对心肌梗死后心功能、炎症水平和心肌梗死面积的影响,旨在探讨心脏原位巨噬细胞在心肌梗死后心脏修复中的作用和机制。

    巨噬细胞特异性Cre工具鼠(Cx3cr1CreER–YFP小鼠)和双重转基因小鼠(R26tdTomato/DTR小鼠)购自上海南方模式生物科技股份有限公司。小鼠在复旦大学附属中山医院实验动物中心SPF级环境中以普通饲料喂养。实验期间,保持动物房内适宜的温度、湿度以及光照时间,小鼠自由进食,自由饮水。将Cx3cr1creER小鼠与R26tdTomato/DTR小鼠杂交,选取8~12周雄性Cx3cr1CreER–YFP:R26tdTomato/DTR杂交小鼠随机分为 4组:假手术组(Sham组)、白喉毒素+假手术组(DT+Sham组)、心肌梗死模型组(MI组)和白喉毒素+心肌梗死模型组(DT+MI组),每组15只小鼠。

    他莫昔芬和白喉毒素(diphtheria toxin,DT)购自美国Sigma公司;LY6G和CD68 免疫荧光抗体购自英国Abcam公司;NF-κB/p-P65购自美国Cell Signaling Technology公司。

    MI组和DT+MI组小鼠构建心肌梗死模型。以2%异氟烷麻醉,心前区脱毛,于胸骨左下作纵形切口,钝性分离皮下组织和胸肌,充分暴露第四肋间隙,挤压胸腔,使心脏从肋间隙滑出,用6-0丝线在距左心耳约3 mm处结扎左前降支。结扎后立即使心脏复位,排除胸腔中的空气,缝合肌肉和皮肤。Sham组和DT+Sham组小鼠构建心肌梗死假手术模型。心脏从肋间隙滑出后,用6-0丝线在距左心耳约3 mm处从左前降支下穿过,不结扎。其余步骤同心肌梗死建模。

    Cx3cr1CreER–YFP×R26tdTomato/DTR小鼠的R26位点插入Td-tomato标记以及白喉毒素受体(diphtheria toxin receptor,DTR),使其带有红色荧光标记;Cre-LoxP系统中插入YFP,启动剪接后带有黄色荧光标记。使用他莫昔芬对3周龄的杂交小鼠灌胃10 d,诱导Cre-LoxP系统启动剪接,使得小鼠所有Cx3cr1标记的巨噬细胞带有黄色以及红色荧光。随着循环系统的更新,带有黄色标记的单核-巨噬细胞系统来源的Cx3cr1巨噬细胞被更新,带有红色荧光的巨噬细胞则为心脏原位巨噬细胞。

    Cx3cr1creER小鼠与R26tdTomato/DTR小鼠杂交的后代同时携带Cx3cr1-creER和R26tdTomato/DTR基因。他莫昔芬灌胃10 d,Cx3cr1高表达细胞(如巨噬细胞)中的creER被激活,进入细胞核并切除tdTomato基因前的STOP序列,使tdTomato基因得以表达。停止他莫昔芬灌胃6周后,小鼠中的原位巨噬细胞均表达DTR。待小鼠成年后进行心肌梗死造模,并注射DT特异性敲除体内的原位巨噬细胞。在心肌梗死后的前7天,每天腹腔注射DT 500 ng,随后每天腹腔注射250 ng,直到心肌梗死后14 d(图1)。

    图  1  Cx3cr1CreER–YFP:R26tdTomato/DTR杂交小鼠心肌梗死模型和心脏原位巨噬细胞敲除模型构建流程
    Figure  1.  Experimental protocol for construction of Cx3cr1CreER–YFP:R26tdTomato/DTR hybrid mouse in myocardial infarction model and cardiac resident macrophage knockout model
    PBS: phosphate buffer saline.

    在心肌梗死造模第5天和第14天,采用颈椎脱臼法分别处死每组6只和9只小鼠。心肌梗死造模第5天,采用福尔马林固定心脏,石蜡包埋并制成切片。组织切片用苏木精和伊红(H-E)染色,以确定心脏原位巨噬细胞敲除对心脏形态学和梗死面积的影响,梗死面积率(%)=总梗死面积/左心室面积×100%。心肌梗死造模第14天,使用Vevo2100超声系统采集心超数据:左心室收缩末期内径(left ventricular end-systolic diameter,LVESD)、左心室舒张末期内径(left ventricular end-diastolic diameter,LVEDD)、左心室缩短分数(fraction shortening,FS)和射血分数(ejection fraction,EF)等。

    心肌梗死造模第14天,取小鼠左心室梗死心肌组织,使用TRIzol 试剂提取总RNA,NanoDrop 2000检测RNA浓度,用反转录试剂盒生成cDNA。GAPDH上游引物:CCCTTATTGACCTCAACTACA,下游引物:TGGTGAGGGGCCATCCACAGTCTTCT;IL-10 上游引物:AGCCTTATCGGAAATGATCCAGT,下游引物:GGCCTTGTAGACACCTTGGT;TGF-β1上游引物:TGTTAAAACTGGCATCTGA,下游引物:GTCTCTTAGGAAGTAGGT;IL-1β上游引物:AGCTCTCCACCTCAATGGAC,下游引物:GACAGGCTTGTGCTCTGCTT;IL-6上游引物:TCCATCCAGTTGCCTTCTTG,下游引物:GGTCTGTTGGGAGTGGTATC;TNF-α上游引物:ACGGCATGGATCTCAAAGAC,下游引物:CGGACTCCGCAAAGTCTAAG;IFN-γ上游引物:ATGAACGCTACACACTGCATC,下游引物:CCATCCTTTTGCCAGTTCCTC。

    心肌梗死造模第5天,取小鼠心脏组织,置于4%多聚甲醛中固定2 h,将心脏标本心尖朝上置于预先铺有OCT的包埋盒中,进行心脏组织切片,封闭后进行染色,使用CD68(1∶300)和LY6G(1∶300)一抗,置于4℃冷库过夜,根据一抗来源种属选用相应二抗,室温避光孵育2 h。制作完成后的冰冻切片即可在荧光显微镜下观察,拍照。

    心肌梗死造模第5天,取小鼠心肌梗死部位,按100∶1∶1∶1的比例将 RIPA裂解液、PMSF、蛋白酶抑制剂、磷酸酶抑制剂按需要量进行预混,制成蛋白样品。凝胶电泳后,蛋白转移至PVDF膜上,按目的蛋白相对分子质量大小对PVDF膜进行裁剪,选择相应一抗孵育过夜。根据一抗种属,配制兔二抗稀释液(1∶700),孵育2 h。选择合适的显影液,避光操作,将显影液均匀滴在PVDF膜上,在化学发光荧光影像分析仪中进行显影分析。

    采用GraphPad Prism 8.0进行统计学分析,计量资料以$ \bar{x}\pm s $表示,采用双尾非配对t检验。检验水准(α)为0.05。

    免疫荧光染色结果(图2)显示:DT+MI组小鼠心脏组织中黄色荧光蛋白明显增多,红色荧光蛋白明显减少。与MI组相比,DT+MI组小鼠心脏原位巨噬细胞数量明显减少[(53.75±4.62)vs(6.37±1.25),P<0.05]。

    图  2  免疫荧光染色比较MI组与DT+MI组小鼠的心脏原位巨噬细胞数量
    Figure  2.  Comparison of the number of cardiac resident macrophages in mice between myocardial infarction group and diphtheria toxin + myocardial infarction group by immunofluorescence staining
    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; YFP: yellow fluorescent protein; RFP: red fluorescent protein. Original magnification: ×40.

    超声心动图结果(图3)显示,与MI组相比,DT+MI组小鼠的EF[(27.76±1.20)% vs(17.61±0.94)%,P<0.05]和FS[(14.40±0.37)% vs(8.08±0.46)%,P<0.05]显著降低,而LVEDD[(5.11±0.22)mm vs(5.92±0.26)mm,P<0.05]和LVESD[(4.77±0.17)mm vs(5.38±0.16)mm,P<0.05]显著增加。

    图  3  MI组与DT+MI组小鼠超声心动图和心功能比较
    Figure  3.  Comparison of echocardiography and cardiac function of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group
    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction. The representative images of echocardiography include the parasternal long-axis view and M-mode image. *P<0.05.

    进一步评估心肌梗死后第5天MI组和DT+MI组心脏中性粒细胞和巨噬细胞的浸润情况,结果(图4A)显示:与MI组相比,DT+MI组小鼠CD68阳性单核巨噬细胞[(44.64±3.57)vs(75.62±3.81),P<0.05]和LY6G阳性中性粒细胞[(13.68±2.54)vs(42.67±2.95),P<0.05]浸润增加。H-E染色结果(图4B)显示,心肌梗死小鼠心脏原位巨噬细胞敲除后,心肌梗死面积率显著高于对照组小鼠[(16.37±2.93)% vs(41.65±3.85)%,P<0.05]。

    图  4  MI组与DT+MI组小鼠心脏炎症细胞浸润和梗死面积比较
    Figure  4.  Comparison of inflammatory cell infiltration and infarct size of mice between MI group and DT+MI group
    A: The effect of cardiac resident macrophage deficiency on LY6G+ neutrophils and CD68+ macrophages in the myocardium of mice after myocardial infarction. Original magnification: ×40. B: The effect of cardiac resident macrophage deficiency on infact size in the myocardium of mice after myocardial infarction. MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; PBS: phosphate buffer saline.*P<0.05.

    定量PCR结果(图5A图5B)显示:心脏原位巨噬细胞的敲除促进急性心肌梗死小鼠IL-1β[(0.47±0.013)vs(0.66±0.065),P<0.05]、IL-6[(0.38±0.044)vs(0.67±0.065),P<0.05]、TNF-α[(0.33±0.043)vs(0.73±0.076),P<0.05]、IFN-γ[(0.36±0.031)vs(0.84±0.071),P<0.05]等促炎细胞因子的产生,抑制IL-10[(1.35±0.11)vs(0.39±0.03),P<0.05]和TGF-β[(4.82±0.42)vs(1.98±0.11),P<0.05]等抗炎细胞因子的分泌。

    图  5  MI组与DT+MI组小鼠心梗组织中细胞因子比较
    Figure  5.  Comparison of cytokines in the infarct tissue of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group
    A: mRNA expression of IL-1β, IL-6, TNF-α and IFN-γ in infarct tissue. B: mRNA expression of IL-10 and TGF-β in infarct tissue. MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; IFN-γ: interferon-γ; IL-10: interleukin-10; TGF-β: transforming growth factor-β.

    Western 印迹检测结果(图6)表明,心梗造模后第5天,与MI组小鼠相比,DT+MI组小鼠NF-κB/p-P65蛋白水平显著升高[(0.28±0.14)vs(1.09±0.12),P<0.05]。

    图  6  MI组与DT+MI组小鼠心肌梗死组织中NF-κB/p-P65蛋白表达比较
    Figure  6.  Comparison of NF-κB/p-P65 protein level in infarct tissue of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group
    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction.

    为了验证心脏原位巨噬细胞在心肌梗死中的作用机制,本研究构建心脏原位巨噬细胞特异性红色荧光标记小鼠模型,并使用DT诱导心肌梗死模型小鼠心脏组织中原位巨噬细胞的缺失,检测小鼠心脏功能、心肌梗死面积、心脏组织炎症浸润及细胞因子表达水平。结果显示,心脏原位巨噬细胞敲除小鼠在心肌梗死后心脏原位巨噬细胞明显减少,LVESD和LVEDD增大、EF降低、心肌炎症细胞浸润增加、心肌梗死面积增加。由此推断,心脏原位巨噬细胞在心肌梗死后可能通过减轻炎症细胞浸润和梗死面积,在心肌梗死后心脏组织修复中发挥重要作用。

    研究[11-12]显示,心脏原位巨噬细胞在急性心肌梗死中发挥重要作用。急性心肌梗死会诱发一系列炎症反应[13-15],心脏原位巨噬细胞的主要作用是清除坏死组织,并启动心梗后的心脏修复过程[16]。如果该反应未受适当调控,可能导致进一步恶化的心脏重构,从而引发心力衰竭[4]。巨噬细胞是免疫系统的关键组成部分,在心肌梗死后的损伤和修复过程中具有双重作用。心脏巨噬细胞具有明显的异质性,心脏原位巨噬细胞(CCR2)来源于胚胎前体,具有自我增殖更新的能力;而浸润的巨噬细胞(CCR2+)来源于循环单核细胞[17]。本研究结果发现,心肌梗死后心脏原位巨噬细胞可以抑制巨噬细胞和中性粒细胞浸润,减少促炎因子释放,从而减轻心肌梗死后的心脏重塑。

    免疫细胞在健康和梗死的心脏组织中表现出转录和功能的异质性。研究[7]结合细胞追踪和单细胞转录组测序(scRNA-seq)技术,确定了健康小鼠心肌中包含4种不同的心脏巨噬细胞亚群,每个亚群都有特定的转录组学背景、生命周期和功能。本研究通过心脏巨噬细胞谱系示踪小鼠模型,定量反映心脏原位巨噬细胞在心肌梗死后的动态变化。尽管在心肌梗死早期,心脏原位巨噬细胞仅占梗死区内全部心脏巨噬细胞的2%~5%,但其缺失使得心肌梗死后的心功能恶化,并延缓了心脏修复。值得注意的是,心肌梗死后大量浸润的单核细胞来源的巨噬细胞并没有弥补心脏原位巨噬细胞的缺失。本研究使用心脏原位巨噬细胞敲除小鼠,证明心脏原位巨噬细胞在心肌梗死后具有独特的保护作用。与浸润的巨噬细胞相比,心脏原位巨噬细胞的基因表达谱差异较大,例如,可能参与心肌梗死后修复的TIMD4、LYVE1等基因显著高表达[18]。其中,原位巨噬细胞中磷脂酰丝氨酸受体TIMD4的表达显著升高,该基因介导了原位巨噬细胞对凋亡细胞的清除功能,而TIMD4的敲除加剧了心肌梗死后的心肌损伤;此外,原位巨噬细胞显著高表达LYVE1,原位巨噬细胞可以通过LYVE1与平滑肌细胞表达的透明质酸结合,在血管稳态中发挥重要作用[19]。因此,表达LYVE1的心脏原位巨噬细胞的缺失可能会破坏心梗后的修复过程。未来,可以通过本研究中心脏原位巨噬细胞示踪策略进一步阐明上述基因的潜在机制。

    综上所述,本研究探讨了心脏原位巨噬细胞在心肌梗死中的作用和功能,发现心肌梗死后心脏原位巨噬细胞明显减少,揭示了心脏原位巨噬细胞的缺失,可能会延缓心肌梗死后心肌的修复,并使得心功能进一步恶化。本研究仍存在不足之处:未验证心脏原位巨噬细胞发挥功能的具体信号通路及相关基因的功能和机制。对此,未来将进行体内和体外研究以进一步验证。

    伦理声明 本研究经复旦大学附属中山医院动物实验伦理委员会批准。

    利益冲突 所有作者声明不存在利益冲突。

    作者贡献 贾代乐:设计实验,实施研究,分析、解释数据及文章撰写;张景洪和陈圻炘:实施研究、采集数据和统计分析;葛均波、孙爱军:设计实验,提供技术指导和经费支持。

  • 图  1   Cx3cr1CreER–YFP:R26tdTomato/DTR杂交小鼠心肌梗死模型和心脏原位巨噬细胞敲除模型构建流程

    Figure  1.   Experimental protocol for construction of Cx3cr1CreER–YFP:R26tdTomato/DTR hybrid mouse in myocardial infarction model and cardiac resident macrophage knockout model

    PBS: phosphate buffer saline.

    图  2   免疫荧光染色比较MI组与DT+MI组小鼠的心脏原位巨噬细胞数量

    Figure  2.   Comparison of the number of cardiac resident macrophages in mice between myocardial infarction group and diphtheria toxin + myocardial infarction group by immunofluorescence staining

    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; YFP: yellow fluorescent protein; RFP: red fluorescent protein. Original magnification: ×40.

    图  3   MI组与DT+MI组小鼠超声心动图和心功能比较

    Figure  3.   Comparison of echocardiography and cardiac function of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group

    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction. The representative images of echocardiography include the parasternal long-axis view and M-mode image. *P<0.05.

    图  4   MI组与DT+MI组小鼠心脏炎症细胞浸润和梗死面积比较

    Figure  4.   Comparison of inflammatory cell infiltration and infarct size of mice between MI group and DT+MI group

    A: The effect of cardiac resident macrophage deficiency on LY6G+ neutrophils and CD68+ macrophages in the myocardium of mice after myocardial infarction. Original magnification: ×40. B: The effect of cardiac resident macrophage deficiency on infact size in the myocardium of mice after myocardial infarction. MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; PBS: phosphate buffer saline.*P<0.05.

    图  5   MI组与DT+MI组小鼠心梗组织中细胞因子比较

    Figure  5.   Comparison of cytokines in the infarct tissue of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group

    A: mRNA expression of IL-1β, IL-6, TNF-α and IFN-γ in infarct tissue. B: mRNA expression of IL-10 and TGF-β in infarct tissue. MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction; IL-1β: interleukin-1β; IL-6: interleukin-6; TNF-α: tumor necrosis factor-α; IFN-γ: interferon-γ; IL-10: interleukin-10; TGF-β: transforming growth factor-β.

    图  6   MI组与DT+MI组小鼠心肌梗死组织中NF-κB/p-P65蛋白表达比较

    Figure  6.   Comparison of NF-κB/p-P65 protein level in infarct tissue of mice between myocardial infarction group and diphtheria toxin + myocardial infarction group

    MI: myocardial infarction; DT+MI: diphtheria toxin + myocardial infarction.

  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on cardiovascular health and diseases in China 2022: an updated summary[J]. Chin Circ J, 2023, 38(6): 583-612. DOI: 10.3969/j.issn.1000-3614.2023.06.001

    [2]

    CHEN R K, ZHANG H R, TANG B T, et al. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets[J]. Signal Transduct Target Ther, 2024, 9(1): 130. DOI: 10.1038/s41392-024-01840-1

    [3]

    HOLT M, LIN J L, CICKA M, et al. Dissecting and visualizing the functional diversity of cardiac macrophages[J]. Circ Res, 2024, 134(12): 1791-1807. DOI: 10.1161/CIRCRESAHA.124.323817

    [4]

    YONA S, KIM K W, WOLF Y, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis[J]. Immunity, 2013, 38(1): 79-91. DOI: 10.1016/j.immuni.2012.12.001

    [5]

    WEINBERGER T, DENISE M, JOPPICH M, et al. Resident and recruited macrophages differentially contribute to cardiac healing after myocardial ischemia[J]. Elife, 2024, 12: RP89377. DOI: 10.7554/eLife.89377.4

    [6]

    EPELMAN S, LAVINE K J, BEAUDIN A E, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation[J]. Immunity, 2014, 40(1): 91-104. DOI: 10.1016/j.immuni.2013.11.019

    [7]

    DICK S A, MACKLIN J A, NEJAT S, et al. Self-renewing resident cardiac macrophages limit adverse remodeling following myocardial infarction[J]. Nat Immunol, 2019, 20(1): 29-39. DOI: 10.1038/s41590-018-0272-2

    [8]

    RIDKER P M, EVERETT B M, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease[J]. N Engl J Med, 2017, 377(12): 1119-1131. DOI: 10.1056/NEJMoa1707914

    [9]

    LAZAROV T, JUAREZ-CARREÑO S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. DOI: 10.1038/s41586-023-06002-x

    [10]

    ZAMAN R, EPELMAN S. Resident cardiac macrophages: heterogeneity and function in health and disease[J]. Immunity, 2022, 55(9): 1549-1563. DOI: 10.1016/j.immuni.2022.08.009

    [11]

    HOCHREITER-HUFFORD A, RAVICHANDRAN K S. Clearing the dead: apoptotic cell sensing, recognition, engulfment, and digestion[J]. Cold Spring Harb Perspect Biol, 2013, 5(1): a008748. DOI: 10.1101/cshperspect.a008748

    [12]

    BAJPAI G, SCHNEIDER C, WONG N, et al. The human heart contains distinct macrophage subsets with divergent origins and functions[J]. Nat Med, 2018, 24(8): 1234-1245. DOI: 10.1038/s41591-018-0059-x

    [13]

    KONSTANTINIDIS K, WHELAN R S, KITSIS R N. Mechanisms of cell death in heart disease[J]. Arterioscler Thromb Vasc Biol, 2012, 32(7): 1552-1562. DOI: 10.1161/ATVBAHA.111.224915

    [14]

    YAP J, IREI J, LOZANO-GERONA J, et al. Macrophages in cardiac remodelling after myocardial infarction[J]. Nat Rev Cardiol, 2023, 20(6): 373-385. DOI: 10.1038/s41569-022-00823-5

    [15] 江丽青, 张 彬, 朱翰朝, 等. 衰老标记蛋白30通过NLRP3/Caspase1炎性信号通路对小鼠心肌梗死后心肌损伤的影响[J]. 空军军医大学学报, 2023, 44(8): 706-711.

    JIANG L Q, ZHANG B, ZHU H Z, et al. Effect of senescence marker protein 30 on myocardial injury after myocardial infarction in mice through NLRP3/Caspase1 inflammatory signaling pathway[J]. J Air Force Med Univ, 2023, 44(8): 706-711.

    [16]

    WAN E, YEAP X Y, DEHN S, et al. Enhanced efferocytosis of apoptotic cardiomyocytes through myeloid-epithelial-reproductive tyrosine kinase links acute inflammation resolution to cardiac repair after infarction[J]. Circ Res, 2013, 113(8): 1004-1012. DOI: 10.1161/CIRCRESAHA.113.301198

    [17]

    SERBINA N V, PAMER E G. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2[J]. Nat Immunol, 2006, 7(3): 311-317. DOI: 10.1038/ni1309

    [18]

    MIYANISHI M, TADA K, KOIKE M, et al. Identification of Tim4 as a phosphatidylserine receptor[J]. Nature, 2007, 450(7168): 435-439. DOI: 10.1038/nature06307

    [19]

    LIM H Y, LIM S Y, TAN C K, et al. Hyaluronan receptor LYVE-1-expressing macrophages maintain arterial tone through hyaluronan-mediated regulation of smooth muscle cell collagen[J]. Immunity, 2018, 49(6): 1191. DOI: 10.1016/j.immuni.2018.12.009

图(6)
计量
  • 文章访问数:  195
  • HTML全文浏览量:  42
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-07-01
  • 录用日期:  2024-07-18
  • 网络出版日期:  2024-07-24
  • 刊出日期:  2024-08-24

目录

/

返回文章
返回