高级检索

无创压力-应变环技术在早期发现慢性肾脏病患者左心室收缩功能损伤中的价值

侯惠萍, 陈智鸿, 吴巧燕, 谢泽涵, 汪咏莳, 罗丽敏

侯惠萍,陈智鸿,吴巧燕,等. 无创压力-应变环技术在早期发现慢性肾脏病患者左心室收缩功能损伤中的价值[J]. 中国临床医学, 2024, 31(6): 898-904. DOI: 10.12025/j.issn.1008-6358.2024.20240404
引用本文: 侯惠萍,陈智鸿,吴巧燕,等. 无创压力-应变环技术在早期发现慢性肾脏病患者左心室收缩功能损伤中的价值[J]. 中国临床医学, 2024, 31(6): 898-904. DOI: 10.12025/j.issn.1008-6358.2024.20240404
HOU H P, CHEN Z H, WU Q Y, et al. Non-invasive pressure-strain loop technology for early detection of left ventricular systolic dysfunction in patients with chronic kidney disease[J]. Chin J Clin Med, 2024, 31(6): 898-904. DOI: 10.12025/j.issn.1008-6358.2024.20240404
Citation: HOU H P, CHEN Z H, WU Q Y, et al. Non-invasive pressure-strain loop technology for early detection of left ventricular systolic dysfunction in patients with chronic kidney disease[J]. Chin J Clin Med, 2024, 31(6): 898-904. DOI: 10.12025/j.issn.1008-6358.2024.20240404

无创压力-应变环技术在早期发现慢性肾脏病患者左心室收缩功能损伤中的价值

基金项目: 国家自然科学基金面上项目(82071991),厦门市科技计划指导性项目(3502Z20224ZD1091).
详细信息
    作者简介:

    侯惠萍,硕士,主治医师. E-mail:hou.huiping@zsxmhospital.com

    通讯作者:

    罗丽敏: Tel:0592-3501990, E-mail:luo.limin@zsxmhospital.com

  • 中图分类号: R 542.21;R 692.5

Non-invasive pressure-strain loop technology for early detection of left ventricular systolic dysfunction in patients with chronic kidney disease

Funds: Supported by General Project of the National Natural Science Foundation of China (82071991) and Xiamen Science and Technology Plan Guiding Project (3502Z20224ZD1091).
  • 摘要:
    目的 

    探讨无创压力-应变环(pressure-strain loop, PSL)技术中的整体心肌做功参数在早期评估慢性肾脏病(chronic kidney disease,CKD)患者左心室收缩功能中的应用价值。

    方法 

    回顾性分析2021年8月至2021年12月于复旦大学附属中山医院厦门医院肾脏内科住院的左心室射血分数(left ventricular ejection fraction, LVEF)正常的CKD患者74例,根据CKD分期分为早期CKD组(CKD 1~3期)和晚期CKD组(CKD 4~5期)。另选取30名年龄、性别相匹配的健康志愿者作为对照组。收集并比较3组研究对象的一般临床资料、左心室常规超声指标、心肌应变和整体心肌做功参数。采用相关性检验和多元线性回归分析评估心肌做功的影响因素。

    结果 

    3组研究对象的左心室整体做功指数(global work index, GWI)、整体有用功(global constructive work, GCW)差异无统计学意义。与对照组相比,两组CKD患者的整体做功效率(global work efficiency, GWE)降低,整体无用功(global waste work, GWW)增加(P<0.05)。晚期CKD组(n=42)整体纵向应变(global longitudinal strain, GLS)绝对值[(﹣17.09±0.82)% vs(﹣18.33±0.90)%, P<0.05]、GWE[93.00%(90.00%, 95.00%) vs 96.00%(92.25%, 96.75%) , P<0.05]低于早期CKD组(n=32),GWW高于早期CKD组[150.00 mmHg%(105.25 mmHg%, 215.00 mmHg%) vs 88.00 mmHg% (64.25 mmHg%, 144.50 mmHg%), P<0.05]。相关性分析显示,GWE与GLS绝对值、峰值应变离散度(peak strain dispersion,PSD)负相关(r=﹣0.396、﹣0.558,P<0.05);GWW与GLS绝对值、PSD正相关(r=0.341、0.610,P<0.01)。多元线性回归结果显示,PSD为GWE(β=﹣0.558, P<0.001)和GWW(β=0.538, P<0.001)的独立相关因素。

    结论 

    无创左心室PSL技术中的心肌做功参数GWE、GWW有助于早期定量识别CKD患者左心室收缩功能损伤。

    Abstract:
    Objective 

    To investigate the application value of the global myocardial work parameters in the non-invasive pressure-strain loop (PSL) technology for early assessment of left ventricular systolic function in patients with chronic kidney disease (CKD).

    Methods 

    A retrospective analysis was performed on 74 patients with normal left ventricular ejection fraction (LVEF) who were hospitalized in the Nephrology Department of Zhongshan Hospital (Xiamen Branch), Fudan University, from August 2021 to December 2021. Based on CKD stages, patients were divided into early group (CKD stages 1-3) and advanced group (CKD stages 4-5). Additionally, 30 healthy volunteers matched for age and gender were selected as the control group. General clinical data, routine left ventricular ultrasound indicators, myocardial strain, and global myocardial work parameters were collected and compared among the three groups. Correlation analysis and multiple linear regression were used to assess the influencing factors of myocardial work.

    Results 

    There were no statistically significant differences in global work index (GWI) and global constructive work (GCW) among the three groups. Compared to the control group, both CKD groups showed significantly reduced global work efficiency (GWE), along with significantly increased global waste work (GWW, P<0.05). The absolute value of global longitudinal strain (GLS) in the advanced CKD group (n=42) was significantly lower than that in the early CKD group (n=32; [﹣17.09±0.82]% vs [﹣18.33±0.90]%, P<0.05), and GWE was also significantly lower (93.00%[90.00%, 95.00%] vs 96.00%[92.25%, 96.75%], P<0.05), while GWW was significantly higher than that in the early CKD group (150.00 mmHg%[105.25 mmHg%, 215.00 mmHg%] vs 88.00 mmHg%[64.25 mmHg%, 144.50 mmHg%], P<0.05). Correlation analysis showed that GWE was negatively correlated with the absolute value of GLS and peak strain dispersion (PSD; r=﹣0.396, ﹣0.558, P<0.05), GWW was positively correlated with absolute value of GLS, and PSD (r=0.341, 0.610, P<0.01). Multiple linear regression results indicated that PSD was an independent influencing factor for GWE (β=﹣0.558, P<0.001) and GWW (β=0.538, P<0.001).

    Conclusions 

    The myocardial work parameters GWE and GWW in non-invasive left ventricular PSL technology can identify subclinical left ventricular systolic dysfunction in patients with CKD early and quantitatively.

  • 慢性肾脏病(chronic kidney disease, CKD)是一种缓慢进展的疾病,随着病情的发展,患者可出现各种并发症。心血管疾病(cardiovascular disease, CVD)是CKD患者常见的并发症之一,甚至是其主要死亡原因。CKD与CVD之间的相互影响可导致患者预后不良。因此,对于CKD患者,早期识别和管理CVD对降低死亡率和改善生活质量至关重要[1-2]

    左心室收缩功能是反映心脏泵血能力的重要指标。左心室射血分数(left ventricular ejection fraction, LVEF)是临床最常用的评估左心室收缩功能的指标,可预测CVD患者发病和死亡。然而,临床上大多数CKD患者的LVEF正常,不利于早期识别左心室收缩功能受损及受损程度[3]。二维斑点追踪技术中的整体纵向应变(global longitudinal strain, GLS)在评估左心室收缩功能方面较LVEF更敏感,但心肌应变易受心脏后负荷的影响,从而降低评估准确性[4-5]。无创左心室压力-应变环(pressure-strain loops, PSL)技术考虑心脏后负荷的影响,将左心室压力与心肌应变相结合获得左心室心肌做功参数,可早期识别并定量评估左心室心肌收缩功能损伤,且与有创心导管检查结果有良好的相关性[6-7]。本研究采用无创左心室PSL技术中的心肌做功参数评估CKD患者的左心室收缩功能。

    回顾性分析2021年8月至2021年12月在复旦大学附属中山医院厦门医院肾脏内科住院的74例CKD患者的临床资料。纳入标准:(1)患者经肾脏穿刺病理证实为CKD;(2)LVEF正常,男性LVEF≥52%、女性LVEF≥53%[8]。排除标准:(1)患有先天性心脏病、原发性心肌病、冠状动脉粥样硬化性心脏病、严重的心脏瓣膜病、严重的心律失常;(2)心脏手术史;(3)超声心动图图像质量差。根据慢性肾脏病的临床实践指南[9]进行分期:1期,肾小球滤过率估计值(estimated glomerular filtration rate, eGFR)>89 mL·min﹣1·(1.73 m2)﹣1,伴有肾损害;2期,eGFR 60~89 mL·min﹣1·(1.73 m2)﹣1;3期,eGFR 30~59 mL·min﹣1·(1.73 m2)﹣1;4期,eGFR 15~29 mL·min﹣1·(1.73 m2)﹣1;5期,eGFR<15 mL·min﹣1·(1.73 m2)﹣1或透析。按照CKD分期将患者分为早期CKD组(CKD 1~3期)和晚期CKD组(CKD 4~5期)。另外选取同期体检中心年龄、性别相匹配的30名健康体检者作为对照组。对照组人群各项实验室指标和影像检查结果均正常。

    图像采集前,收集受试者的基线资料,包括性别、年龄、身高、体质量、吸烟史、糖尿病史、收缩压(systolic blood pressure, SBP)、舒张压(diastolic blood pressure, DBP)、空腹血糖(fasting plasma glucose, FPG)和eGFR。根据公式计算体质量指数(body mass index, BMI)和体表面积(body surface area, BSA):BMI=体质量(kg)/身高2(m2),BSA(m2)=0.006 1×身高(cm)+0.0128×体质量(kg)-0.152 9。

    采用美国GE Vivid E95彩色多普勒超声诊断仪进行超声心动图检查(M5Sc探头,频率1~5 MHz),系统配备AFI自动分析模式及EchoPAC V.203脱机软件。采集患者心前区标准心尖四腔心、两腔心、三腔心切面的连续3个心动周期动态图像。二维平面测量左心室舒张末期内径(left ventricular end-diastolic diameter, LVEDD)、左心室收缩末期内径(left ventricular end-systolic diameter, LVESD)、室间隔厚度(inter-ventricular septum thickness, IVST)及左心室后壁舒张末期厚度(left ventricular posterior wall thickness, LVPWT)。采用Deiereux校正公式计算左心室质量(left ventricular mass, LVM):LVM=0.8×1.04[(IVST+LVPWT+LVEDD)3-LVEDD3]+0.6;获得左心室质量指数(left ventricular mass index, LVMI):LVMI=LVM/BSA。采用Simpson双平面法测量LVEF。点击 Measure,标记Event timing,根据二尖瓣及主动脉瓣前向血流频谱确定二尖瓣和主动脉瓣开放、关闭时间,点击切面动态图像,进入AFI分析模式,描记左室壁轮廓,点击Process完成该切面分析。按上述方法依次分析四腔心、两腔心、三腔心切面,系统自动得出左心室心肌应变参数,包括GLS和峰值应变离散度(peak strain dispersion, PSD)。选择Myocardial Work,点击Advanced,获得左心室PSL曲线及整体心肌做功参数。整体心肌做功参数包括整体做功指数(global work index, GWI)、整体有用功(global constructive work, GCW)、整体无用功(global waste work, GWW)和整 体 做 功 效 率(global work efficiency, GWE)。

    采用SPSS 23.0统计软件分析数据,Kolmogorov-Smirnov法检验正态性,Levene法检验方差齐性。正态分布的计量资料以$ \bar{x}\pm s $表示,两组比较采用独立样本t检验,多组比较采用单因素方差分析,多组间两两比较采用LSD法;不符合正态分布的计量资料以MP25P75)表示,采用Mann-Whitney U检验,多组比较采用Kruskal Wallis H检验。计数资料以n(%)表示,组间比较采用χ2检验。正态分布参数相关性采用Pearson相关系数分析,非正态分布参数相关性采用Kendall等级相关系数分析。采用多元线性逐步回归分析评估心肌做功的影响因素。统计学检验均为双侧检验,检验水准(α)为0.05。

    74例CKD患者中,早期32例、晚期42例。结果(表1)显示:3组间糖尿病患者比例差异有统计学意义,晚期CKD组高于对照组(P<0.05);两组CKD患者的FPG均高于对照组,CKD组间差异无统计学意义。与对照组相比,两组CKD患者的SBP、DBP均升高,eGFR均降低(P<0.05);晚期CKD组SBP、DBP均高于早期CKD组,eGFR低于早期CKD组(P<0.05)。心超参数中,两组CKD患者的IVST、LVPWT、LVMI高于对照组,晚期CKD组高于早期CKD组(P<0.05);两组CKD患者的GLS绝对值低于对照组,晚期CKD组低于早期CKD组(P<0.05);与对照组、早期CKD组相比,晚期CKD组的PSD升高(P<0.05)。

    表  1  3组研究对象的一般资料、左心室常规心超参数及应变参数比较
    Table  1.  Comparison of general data, parameters of the left ventricle on conventional ultrasound and strain among three groups
     Index Control group (n=30) Early CKD group (n=32) Advanced CKD group (n=42) F/χ2 P
    Male n(%) 15(50.00) 18(56.25) 26(61.90) 1.015 0.602
    Age/year 45.27±4.49 45.72±5.51 46.12±4.39 7.290 0.968
    BMI/(kg·m﹣2 22.56±1.02 22.78±0.84 22.99±0.81 0.248 0.781
    BSA/m2 1.71(1.49, 1.78) 1.62(1.52, 1.75) 1.63(1.53, 1.78) 0.359 0.836
    Smoking n(%) 6(20.00) 8(25.00) 7(16.67) 0.784 0.676
    Diabetes n(%) 0 4(12.50) 11(26.19)* 9.864 0.007
    FPG/(mmol·L﹣1) 4.70(4.50, 5.00) 5.60(5.33, 6.00)* 5.80(5.50, 6.60)* 53.623 <0.001
    SBP/mmHg 116.30±3.44 129.16±5.77* 151.14±5.72*△ 50.576 <0.001
    DBP/mmHg 71.50±2.92 81.88±4.17* 88.36±3.46*△ 22.904 <0.001
    eGFR/[mL·min﹣1·(1.73m2)﹣1] 108.00(99.35, 115.15) 68.18(38.82, 85.71)* 6.37(3.73, 13.85)*△ 83.196 <0.001
    LVEDD/mm 43.83±1.38 45.19±1.52 45.71±1.35 1.874 0.159
    LVESD/mm 27.00(25.00, 28.00) 27.50(25.00, 30.00) 28.00(26.00, 30.25) 4.874 0.087
    IVST/mm 8.00(7.00, 9.00) 9.00(8.00, 10.75)* 12.00(10.00, 14.00)*△ 45.144 <0.001
    LVPWT/mm 8.00(7.00, 9.00) 9.00(8.00, 10.00)* 11.00(9.75, 12.00)*△ 45.431 <0.001
    LVMI/(g·m﹣2) 65.41±4.67 83.92±6.80* 117.67±10.69*△ 47.979 <0.001
    LVEF/% 69.00(67.00, 71.00) 70.00(66.00, 73.00) 68.00(64.00, 71.25) 2.751 0.253
    GLS/% ﹣20.62±0.92 ﹣18.33±0.90* ﹣17.09±0.82*△ 16.918 0.000
    PSD/ms 39.16(33.10, 44.63) 43.00(37.00, 55.75) 58.50(48.50, 72.00)*△ 34.639 <0.001
      BMI: body mass index; BSA: body surface area; FPG: fasting plasma glucose; SBP: systolic blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; LVEDD: left ventricular end-diastolic diameter; LVESD: left ventricular end-systolic diameter; IVST: inter-ventricular septum thickness; LVPWT: left ventricular posterior wall thickness; LVMI: left ventricular mass index; LVEF: left ventricular ejection fraction; GLS: global longitudinal strain; PSD: peak strain dispersion. *P<0.05 vs the control group; P<0.05 vs the early CKD group.
    下载: 导出CSV 
    | 显示表格

    由左心室PSL曲线获得心肌做功参数,结果(表2)显示:3组间GWE、GWW差异有统计学意义(P<0.001)。早期CKD组和晚期CKD组GWE均低于对照组,晚期CKD组低于早期CKD组(P<0.05);早期CKD组和晚期CKD组GWW均大于对照组,晚期CKD组大于早期CKD组(P<0.05)。3组左心室PSL与心肌做功参数图像见图1

    表  2  3组研究对象PSL中左心室心肌做功参数比较
    Table  2.  Comparison of left ventricular myocardial work parameters in PSL among three groups
     Index Control group (n=30) Early CKD group (n=32) Advanced CKD group (n=42) F/χ2 P
    GWI/mmHg% 2 086.00±116.51 2 060.31±143.38 2 003.90±121.61 0.466 0.629
    GCW/mmHg% 2181.83(1 986.75, 2 301.75) 2 202.97(1 927.75, 2 375.00) 2 290.19(1 937.00, 2 610.50) 2.207 0.332
    GWE/% 96.00(95.75, 97.00) 96.00(92.25, 96.75)* 93.00(90.00, 95.00)*△ 29.836 <0.001
    GWW/mmHg% 59.50(49.75, 88.25) 88.00(64.25, 144.50)* 150.00(105.25, 215.00)*△ 31.078 <0.001
      GWI: global work index; GCW: global constructive work; GWE: global work efficiency; GWW: global waste work. *P<0.05 vs the control group; P<0.05 vs the early CKD group.
    下载: 导出CSV 
    | 显示表格
    图  1  左心室无创压力-应变环与心肌做功参数
    Figure  1.  Left ventricular pressure-strain loop and myocardial work parameters
    A: Healthy volunteer; B: Patient with early chronic kidney disease; C: Patient with advanced chronic kidney disease. GLS: global longitudinal strain; GWI: global work index; GCW: global constructive work; GWW: global waste work; GWE: global work efficiency; BP: blood pressure.

    相关性分析结果(表3)显示:GWE与SBP、DBP、FPG、LVMI、GLS绝对值、PSD负相关,与eGFR正相关(P<0.05);GWW与SBP、DBP、FPG、LVMI、GLS绝对值、PSD正相关,与eGFR负相关(P<0.05)。多元线性回归分析结果(表3)显示:GWE的回归方程显著(F=37.267, P<0.001),其中GLS绝对值(β=﹣0.235, P=0.022)、PSD(β=﹣0.558, P<0.001)是GWE的独立相关因素,解释GWE 49.8%的变异;GWW的回归方程显著(F=24.715, P<0.001),其中DBP(β=0.210,P=0.034)、PSD(β=0.538,P<0.001)是GWW的独立相关因素,解释GWW 39.4%的变异。

    表  3  GWE、GWW与临床参数的相关性及多元线性回归分析
    Table  3.  Correlations and multiple linear regression analysis between GWE, GWW and clinical parameters
     Variable Correlation analysis Multiple linear regression analysis
    r P β t P F Adjusted R2
    GWE 37.267 0.498
     SBP ﹣0.272 0.001
     DBP ﹣0.258 0.002
     FPG ﹣0.199 0.019
     eGFR 0.219 0.008
     LVMI ﹣0.212 0.011
     GLS ﹣0.396 <0.001 ﹣0.235 ﹣2.347 0.022
     PSD ﹣0.558 <0.001 ﹣0.558 ﹣5.579 <0.001
    GWW 24.715 0.394
     SBP 0.455 <0.001
     DBP 0.394 0.001 0.210 2.163 0.034
     FPG 0.175 0.030
     eGFR ﹣0.198 0.013
     LVMI 0.168 0.034
     GLS 0.341 0.003
     PSD 0.610 <0.001 0.538 5.543 <0.001
      GWE: global work efficiency; GWW: global waste work; SBP: systolic blood pressure; DBP: diastolic blood pressure; FPG: fasting plasma glucose; eGFR: estimated glomerular filtration rate; LVMI: left ventricular mass index; GLS: global longitudinal strain; PSD: peak strain dispersion.
    下载: 导出CSV 
    | 显示表格

    CKD患者常出现氧化应激、慢性炎症、器官组织纤维化、血管内皮功能障碍等情况,导致心脏微观病变(心肌细胞肥大、心肌间质纤维化和冠状动脉微血管疾病)和心肌结构重塑(如左心室肥大),从而引起不同程度的心肌收缩异常[10-12]。然而,临床上大部分CKD患者LVEF正常。GLS是诊断心功能障碍的敏感指标,但其具有负荷依赖性,受血压影响较大。

    研究[13-14]显示,无创左心室PSL技术中的心肌做功参数GWE、GWW不仅可早期识别CKD患者左心室收缩功能损伤,还对冠状动脉粥样硬化性心脏病(coronary artery disease, CAD)心肌缺血人群以及甲亢患者早期心肌功能变化有较好的评估作用。为了早期发现CKD患者心功能变化,并克服后负荷的影响,本研究采用左室PSL定量评估CKD患者的左心室收缩功能。结果显示,与健康对照组相比,CKD患者的GWW增加、GWE下降,并且晚期CKD组比早期CKD组的变化更显著,与Liu等[15]的研究结果基本一致。

    本研究相关性分析发现,GWW、GWE均与SBP、DBP、FPG、eGFR、LVMI、PSD、GLS相关,且PSD为GWW、GWE的独立相关因素。本研究CKD患者GWW增加的可能原因:(1)患者心肌做功后负荷较大,导致室壁压力增加,左心室必须加强做功来克服;(2)患者体内的毒性物质引起心肌缺血、心肌细胞肥大、纤维化、细胞外基质改变等情况,导致心肌兴奋-收缩耦联不同步,PSD延长,不利于左心室射血;(3)部分患者处于高血糖状态,加剧了肾素-血管紧张素-醛固酮系统(renin-aniotensin-aldosterone system,RAAS)活化、氧化应激和炎症反应、线粒体功能障碍、细胞内钙稳态变化、晚期糖基化终产物形成增加以及心肌能量底物改变(包括游离脂肪酸利用增加、葡萄糖利用减少和耗氧量增加)等一系列变化,促使心脏肥大、纤维化、心肌能量代谢异常和心肌细胞凋亡,影响心脏舒张和收缩功能[16-18]。根据公式GWE=GCW/(GCW+GWW),当GCW无明显变化时,GWW增加可导致GWE降低。GWW增加是左心室收缩功能异常的主要原因。

    综上所述,本研究表明,无创左心室PSL技术中GWE、GWW有助于早期发现CKD患者左心室收缩功能损伤,且能反映受损程度,PSD与GWE、GWW独立相关。临床可通过控制血压、改善心室重构、减轻肾脏炎症等方式改善CKD患者左心室收缩功能。由于本研究样本量较小,且为单中心回顾性研究,未来须通过增加样本量,进行前瞻性、多中心研究验证本研究结果,并按照CKD分期详细分组进行深入研究。

    伦理声明 本研究通过复旦大学附属中山医院厦门医院医学伦理委员会批准(B2021-027),所有受试者均签署知情同意书。

    利益冲突 所有作者声明不存在利益冲突。

    作者贡献 侯惠萍:采集与处理超声图像、分析数据、撰写与修改论文;陈智鸿、吴巧燕、谢泽涵:收集临床资料、查阅文献;汪咏莳:分析数据、查阅文献;罗丽敏:研究思路设计、审阅论文。

  • 图  1   左心室无创压力-应变环与心肌做功参数

    Figure  1.   Left ventricular pressure-strain loop and myocardial work parameters

    A: Healthy volunteer; B: Patient with early chronic kidney disease; C: Patient with advanced chronic kidney disease. GLS: global longitudinal strain; GWI: global work index; GCW: global constructive work; GWW: global waste work; GWE: global work efficiency; BP: blood pressure.

    表  1   3组研究对象的一般资料、左心室常规心超参数及应变参数比较

    Table  1   Comparison of general data, parameters of the left ventricle on conventional ultrasound and strain among three groups

     Index Control group (n=30) Early CKD group (n=32) Advanced CKD group (n=42) F/χ2 P
    Male n(%) 15(50.00) 18(56.25) 26(61.90) 1.015 0.602
    Age/year 45.27±4.49 45.72±5.51 46.12±4.39 7.290 0.968
    BMI/(kg·m﹣2 22.56±1.02 22.78±0.84 22.99±0.81 0.248 0.781
    BSA/m2 1.71(1.49, 1.78) 1.62(1.52, 1.75) 1.63(1.53, 1.78) 0.359 0.836
    Smoking n(%) 6(20.00) 8(25.00) 7(16.67) 0.784 0.676
    Diabetes n(%) 0 4(12.50) 11(26.19)* 9.864 0.007
    FPG/(mmol·L﹣1) 4.70(4.50, 5.00) 5.60(5.33, 6.00)* 5.80(5.50, 6.60)* 53.623 <0.001
    SBP/mmHg 116.30±3.44 129.16±5.77* 151.14±5.72*△ 50.576 <0.001
    DBP/mmHg 71.50±2.92 81.88±4.17* 88.36±3.46*△ 22.904 <0.001
    eGFR/[mL·min﹣1·(1.73m2)﹣1] 108.00(99.35, 115.15) 68.18(38.82, 85.71)* 6.37(3.73, 13.85)*△ 83.196 <0.001
    LVEDD/mm 43.83±1.38 45.19±1.52 45.71±1.35 1.874 0.159
    LVESD/mm 27.00(25.00, 28.00) 27.50(25.00, 30.00) 28.00(26.00, 30.25) 4.874 0.087
    IVST/mm 8.00(7.00, 9.00) 9.00(8.00, 10.75)* 12.00(10.00, 14.00)*△ 45.144 <0.001
    LVPWT/mm 8.00(7.00, 9.00) 9.00(8.00, 10.00)* 11.00(9.75, 12.00)*△ 45.431 <0.001
    LVMI/(g·m﹣2) 65.41±4.67 83.92±6.80* 117.67±10.69*△ 47.979 <0.001
    LVEF/% 69.00(67.00, 71.00) 70.00(66.00, 73.00) 68.00(64.00, 71.25) 2.751 0.253
    GLS/% ﹣20.62±0.92 ﹣18.33±0.90* ﹣17.09±0.82*△ 16.918 0.000
    PSD/ms 39.16(33.10, 44.63) 43.00(37.00, 55.75) 58.50(48.50, 72.00)*△ 34.639 <0.001
      BMI: body mass index; BSA: body surface area; FPG: fasting plasma glucose; SBP: systolic blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; LVEDD: left ventricular end-diastolic diameter; LVESD: left ventricular end-systolic diameter; IVST: inter-ventricular septum thickness; LVPWT: left ventricular posterior wall thickness; LVMI: left ventricular mass index; LVEF: left ventricular ejection fraction; GLS: global longitudinal strain; PSD: peak strain dispersion. *P<0.05 vs the control group; P<0.05 vs the early CKD group.
    下载: 导出CSV

    表  2   3组研究对象PSL中左心室心肌做功参数比较

    Table  2   Comparison of left ventricular myocardial work parameters in PSL among three groups

     Index Control group (n=30) Early CKD group (n=32) Advanced CKD group (n=42) F/χ2 P
    GWI/mmHg% 2 086.00±116.51 2 060.31±143.38 2 003.90±121.61 0.466 0.629
    GCW/mmHg% 2181.83(1 986.75, 2 301.75) 2 202.97(1 927.75, 2 375.00) 2 290.19(1 937.00, 2 610.50) 2.207 0.332
    GWE/% 96.00(95.75, 97.00) 96.00(92.25, 96.75)* 93.00(90.00, 95.00)*△ 29.836 <0.001
    GWW/mmHg% 59.50(49.75, 88.25) 88.00(64.25, 144.50)* 150.00(105.25, 215.00)*△ 31.078 <0.001
      GWI: global work index; GCW: global constructive work; GWE: global work efficiency; GWW: global waste work. *P<0.05 vs the control group; P<0.05 vs the early CKD group.
    下载: 导出CSV

    表  3   GWE、GWW与临床参数的相关性及多元线性回归分析

    Table  3   Correlations and multiple linear regression analysis between GWE, GWW and clinical parameters

     Variable Correlation analysis Multiple linear regression analysis
    r P β t P F Adjusted R2
    GWE 37.267 0.498
     SBP ﹣0.272 0.001
     DBP ﹣0.258 0.002
     FPG ﹣0.199 0.019
     eGFR 0.219 0.008
     LVMI ﹣0.212 0.011
     GLS ﹣0.396 <0.001 ﹣0.235 ﹣2.347 0.022
     PSD ﹣0.558 <0.001 ﹣0.558 ﹣5.579 <0.001
    GWW 24.715 0.394
     SBP 0.455 <0.001
     DBP 0.394 0.001 0.210 2.163 0.034
     FPG 0.175 0.030
     eGFR ﹣0.198 0.013
     LVMI 0.168 0.034
     GLS 0.341 0.003
     PSD 0.610 <0.001 0.538 5.543 <0.001
      GWE: global work efficiency; GWW: global waste work; SBP: systolic blood pressure; DBP: diastolic blood pressure; FPG: fasting plasma glucose; eGFR: estimated glomerular filtration rate; LVMI: left ventricular mass index; GLS: global longitudinal strain; PSD: peak strain dispersion.
    下载: 导出CSV
  • [1]

    MATSUSHITA K, BALLEW S H, WANG A Y M, et al. Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease[J]. Nat Rev Nephrol, 2022, 18(11): 696-707. DOI: 10.1038/s41581-022-00616-6

    [2]

    SAEED D, REZA T, SHAHZAD M W, et al. Navigating the crossroads: understanding the link between chronic kidney disease and cardiovascular health[J]. Cureus, 2023, 15(12): e51362.

    [3]

    KONSTAM M A, ABBOUD F M. Ejection fraction: misunderstood and overrated (changing the paradigm in categorizing heart failure)[J]. Circulation, 2017, 135(8): 717-719. DOI: 10.1161/CIRCULATIONAHA.116.025795

    [4]

    LIU C, YAN Z N, FAN L, et al. Layer-specific speckle tracking analysis of left ventricular systolic function and synchrony in maintenance hemodialysis patients[J]. BMC Cardiovasc Disord, 2020, 20(1): 126. DOI: 10.1186/s12872-019-01324-z

    [5]

    TOPS L F, DELGADO V, MARSAN N A, et al. Myocardial strain to detect subtle left ventricular systolic dysfunction[J]. Eur J Heart Fail, 2017, 19(3): 307-313. DOI: 10.1002/ejhf.694

    [6]

    RUSSELL K, ERIKSEN M, AABERGE L, et al. A novel clinical method for quantification of regional left ventricular pressure-strain loop area: a non-invasive index of myocardial work[J]. Eur Heart J, 2012, 33(6): 724-733. DOI: 10.1093/eurheartj/ehs016

    [7]

    BOE E, SKULSTAD H, SMISETH O A. Myocardial work by echocardiography: a novel method ready for clinical testing[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(1): 18-20. DOI: 10.1093/ehjci/jey156

    [8] 中华医学会超声医学分会超声心动图学组, 中国医师协会心血管分会超声心动图专业委员会. 超声心动图评估心脏收缩和舒张功能临床应用指南[J]. 中华超声影像学杂志, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115

    Cardiovascular Ultrasound Group of the Ultrasound Medicine Branch of the Chinese Medical Association, Professional Committee of Echocardiography of the Cardiovascular Branch of the Chinese Physician Association. Guidelines for clinical application of echocardiography in evaluating cardiac systolic and diastolic function[J]. Chin J Ultrason, 2020, 29(6): 461-477. DOI: 10.3760/cma.j.cn131148-20200227-00115

    [9]

    BAILIE G R, UHLIG K, LEVEY A S. Clinical practice guidelines in nephrology: evaluation, classification, and stratification of chronic kidney disease[J]. Pharmacotherapy, 2005, 25(4): 491-502. DOI: 10.1592/phco.25.4.491.61034

    [10]

    VONDENHOFF S, SCHUNK S J, NOELS H. Increased cardiovascular risk in patients with chronic kidney disease[J]. Herz, 2024, 49(2): 95-104. DOI: 10.1007/s00059-024-05235-4

    [11]

    XU C C, TSIHLIS G, CHAU K, et al. Novel perspectives in chronic kidney disease-specific cardiovascular disease[J]. Int J Mol Sci, 2024, 25(5): 2658. DOI: 10.3390/ijms25052658

    [12]

    PATEL N, YAQOOB M M, AKSENTIJEVIC D. Cardiac metabolic remodelling in chronic kidney disease[J]. Nat Rev Nephrol, 2022, 18(8): 524-537. DOI: 10.1038/s41581-022-00576-x

    [13] 赵盈洁, 何芙蓉, 何 玮, 等. 无创左室压力应变曲线在冠心病心肌缺血诊断中的价值[J]. 中国临床医学, 2024, 31(3): 411-419. DOI: 10.12025/j.issn.1008-6358.2024.20231344

    ZHAO Y J, HE F R, HE W, et al. Value of non-invasive left ventricular myocardial work in the diagnosis of myocardial ischemia in coronary heart disease[J]. Chin J Clin Med, 2024, 31(3): 411-419. DOI: 10.12025/j.issn.1008-6358.2024.20231344

    [14] 罗琴音, 陶斌文, 甘 丽, 等. 左室压力-应变环技术用于评估甲亢患者早期心肌功能变化的临床观察[J]. 中华全科医学, 2024, 22(4): 642-645.

    LUO Q Y, TAO B W, GAN L, et al. Clinical effectiveness observation of left ventricular pressure strain loop technique for evaluating early changes in myocardial function among patients with hyperthyroidism[J]. Chin J Gen Pract, 2024, 22(4): 642-645.

    [15]

    LIU F Z, WANG X L, ZHANG C Q. Quantitative assessment of left ventricular myocardial work in chronic kidney disease patients by a novel non-invasive pressure-strain loop analysis method[J]. Int J Cardiovasc Imaging, 2021, 37(5): 1567-1575. DOI: 10.1007/s10554-020-02132-9

    [16]

    RUSSELL K, ERIKSEN M, AABERGE L, et al. Assessment of wasted myocardial work: a novel method to quantify energy loss due to uncoordinated left ventricular contractions[J]. Am J Physiol Heart Circ Physiol, 2013, 305(7): H996-H1003. DOI: 10.1152/ajpheart.00191.2013

    [17]

    CHAN J, EDWARDS N F A, KHANDHERIA B K, et al. A new approach to assess myocardial work by non-invasive left ventricular pressure-strain relations in hypertension and dilated cardiomyopathy[J]. Eur Heart J Cardiovasc Imaging, 2019, 20(1): 31-39. DOI: 10.1093/ehjci/jey131

    [18]

    PARK J J. Epidemiology, pathophysiology, diagnosis and treatment of heart failure in diabetes[J]. Diabetes Metab J, 2021, 45(2): 146-157. DOI: 10.4093/dmj.2020.0282

图(1)  /  表(3)
计量
  • 文章访问数:  122
  • HTML全文浏览量:  11
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-14
  • 录用日期:  2024-06-10
  • 网络出版日期:  2024-11-07
  • 刊出日期:  2024-12-24

目录

/

返回文章
返回