Echocardiography evaluation of myocardial strain and ventricular dyssynchrony after implantation of leadless pacemaker Micra AV
-
摘要:目的
探讨植入Micra AV无导线起搏器患者的左、右室心肌应变及不同步性,并进一步分析植入位置对心肌应变及不同步性的影响。
方法回顾性选择2023年4月至2023年12月在复旦大学附属中山医院心内科植入Micra AV的患者43例(Micra AV组)以及高度房室传导阻滞(Ⅱ度Ⅱ型、Ⅲ度房室传导阻滞)患者20例(传导阻滞组),收集患者人口学信息、临床特征。采用常规超声心动图和斑点追踪成像技术获取2组患者的常规心超参数、心肌应变及不同步性指标,包括心室整体纵向应变(global longitudinal strain, GLS)、心室游离壁纵向应变(free wall longitudinal strain, FWLS)、左室18节段纵向应变达峰时间离散度(peak strain dispersion, PSD)、右室6节段PSD以及其他指标。根据Micra AV植入位置进一步分为中位组(右室间隔部)、高位组(右室流入道)及低位组(心尖部),比较3个亚组心肌应变及不同步性指标差异。
结果Micra AV组左室GLS、右室GLS、右室FWLS均显著低于传导阻滞组(P<0.001),Micra AV组的右室不同步性显著高于传导阻滞组(P<0.05)。不同植入部位心肌应变及不同步性比较显示,高位组左室GLS显著高于中位组和低位组,左室不同步性指标Yu指数显著低于中位组(P<0.05);低位组右室射血分数(right ventricular ejection fraction, RVEF)显著低于高位组,右室6节段PSD显著高于中位组和高位组(P<0.05)。
结论与高度房室传导阻滞患者相比,Micra AV无导线起搏患者的左室及右室心肌应变减低,且低位植入的影响更大。
Abstract:ObjectiveTo explore the left and right ventricular myocardial strain and dyssynchrony in patients with Micra AV leadless pacing implantation, and to further analyze the impact of implantation site on myocardial strain and dyssynchrony.
MethodsA retrospective study was conducted on 43 patients with Micra AV implantation and 20 patients with high-degree atrioventricular block (Ⅱdegree typeⅡand Ⅲ degree atrioventricular block) at the Department of Cardiology, Zhongshan Hospital from April 2023 to December 2023. The demographic information and clinical characteristics of the patients were collected. Echocardiography and speckle tracking imaging techniques were used to obtain conventional echocardiographic parameters, myocardial strain, and dyssynchrony indices of patients in the two groups, including global longitudinal strain (GLS), free wall longitudinal strain (FWLS), peak strain dispersion (PSD) of 18 left ventricular segments, PSD of 6 right ventricular segments, and other indices. According to the implantation location of Micra AV, the patients were further divided into middle group (right ventricular septum), high group (right ventricular inflow tract), and low group (apical region), and the differences in myocardial strain and dyssynchrony indices among the three subgroups were compared.
ResultsThe left ventricular GLS (LVGLS), right ventricular GLS (RVGLS), and right ventricular FWLS (RVFWLS) of the Micra AV group were significantly lower than those of the conduction block group (P<0.001), and the right ventricular dyssynchrony of the Micra AV group was significantly higher than that of the conduction block group (P<0.05). Comparison of myocardial strain and dyssynchrony at different implantation sites showed that the LVGLS of the high implantation group was significantly higher than that of the middle and low implantation groups, and the left ventricular dyssynchrony index Yu was significantly lower than that of the middle group (P<0.05); the right ventricular ejection fraction (RVEF) of the low implantation group was significantly lower than that of the high group, and the right ventricular 6-segment PSD was significantly higher than that of the middle and high implantation groups (P<0.05).
ConclusionsCompared with patients with high-degree atrioventricular block, patients with Micra AV leadless pacing have reduced left and right ventricular strain, and the implantation of low position had greater effect.
-
-
图 1 斑点追踪分析心室不同步性的方法
Figure 1. Methods of speckle tracking echocardiography analysis of ventricle dyssynchrony
A: Speckle tracking imaging was used to trace the right ventricle endocardium and obtain the longitudinal strain curves of 6 right ventricular segments, and the time to peak strain of each curve was manually record. B: Speckle tracking imaging was used to trace the three-plane left ventricle endocardium to obtain a “bull’s eye map”, which automatically obtained the peak strain deviation (PSD) of 18 segments (shown in red box). FR: frame rate; HR: heart rate; GS: global strain; FWS: free wall strain; TAPSE: tricuspid annular plane systolic excursion; ANT: anterior wall; LAT: lateral wall; POST: post wall; INF: inferior wall; SEPT: septum; ANT SEPT: anterior septum.
图 2 超声心动图观察Micra AV 的常见切面
Figure 2. Common sections of Micra AV observed by echocardiography
A: The outflow tract implanted Micra AV was observed in parasternal longaxial section in a long shape (red arrow). B: The circular shape of septum implanted Micra AV (red arrow) was observed at 12 o’clock direction in the right ventricular outflow tract of the minor axial section of the great artery. C: The circular shape of apex implanted Micra AV (red arrow) was observed in the right ventricle at the level of the parasternal short axis near the papillary muscle.
表 1 Micra AV组和传导阻滞组常规超声心动图指标比较
Table 1 Comparison of routine echocardiographic parameters between Micra AV group and conduction block group
Index Micra AV group (n=43) Conduction block group (n=20) P Male n(%) 25(58.1) 13(65.0) 0.532 Age/year 58.3±18.6 52.5±20.3 0.733 Aortic root/mm 31.6±7.9 30.1±3.2 0.674 Left atrial diameter/mm 37.3±6.4 36.9±5.1 0.821 LVEDD/mm 47.1±5.1 46.9±4.8 0.901 LVEDS/mm 30.7±5.1 28.5±3.2 0.163 Septal thickness/mm 10.5±1.9 9.4±1.6 0.064 Posterior wall thickness/mm 9.3±1.4 8.9±1.3 0.304 LVEDV/mL 89.2±39.5 86.5±29.7 0.395 LVESV/mL 35.81±22.6 31.92±14.9 0.215 LVEF/% 54.5±20.4 65.21±6.2 0.061 Peak E velocity/(cm•s−1) 71.1±27.4 89.1±28.8 0.060 Peak A velocity/(cm•s−1) 81.0±116.5 90.1±53.5 0.544 Deceleration time/ms 181.1±72.6 194.4±106.1 0.085 Lateral wall S’/(cm•s−1) 8.0±5.1 8.9±2.7 0.904 Lateral wall e’/(cm•s−1) 8.2±5.1 12.1±6.5 0.132 Lateral wall a’/(cm•s−1) 10.2±5.1 7.8±4.7 0.313 Septum s’/(cm•s−1) 6.2±2.6 7.5±1.1 0.224 Septum e’/(cm•s−1) 5.5±2.9 7.9±2.9 0.212 Septum a’/(cm•s−1) 7.4±3.6 7.4±4.2 0.174 PASP/mmHg 30.2±8.5 31.3±14.4 0.731 RV-FAC/% 44.1±10.5 47.6±12.7 0.334 RVEDV/mL 36.1±14.1 36.3±10.9 0.961 RVESV/mL 13.9±5.7 12.7±5.3 0.484 RVEF/% 60.6±11.3 63.8±7.7 0.334 TAPSE/mm 16.5±4.1 19.9±4.4 0.014 Tricuspid valve peak A/(cm•s−1) 43.9±15.9 51.1±24.8 0.083 Tricuspid valve a’/(cm•s−1) 11.4±5.9 12.1±6.0 0.324 Tricuspid valve DT/ms 179.3±87.9 191.4±85.6 0.435 Tricuspid valve peak E/(cm•s−1) 54.1±22.2 64.8±26.6 0.232 Tricuspid valve e’/(cm•s−1) 11.2±11.1 11.8±4.2 0.962 Tricuspid valve S/(cm•s−1) 10.4±4.2 12.5±1.8 0.090 LVEDD: left ventricular end-diastolic diameter; LVEDS: left ventricular end-systolic diameter; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left ventricular ejection fraction; PASP: pulmonary artery systolic pressure; RV-FAC: right ventricular-fractional area change; RVEDV: right ventricular end-diastolic volume; RVESV: right ventricular end-systolic volume; RVEF: right ventricular ejection fraction; TAPSE: tricuspid annular plane systolic excursion; DT: deceleration time. 表 2 Micra AV组与传导阻滞组心肌应变及不同步性指标比较
Table 2 Comparison of ventricular strain and dyssynchrony indicators between Micra AV group and conduction block group
Index Micra AV group (n=43) Conduction block group (n=20) P LVGLS/% −15.7±3.84 −20.1±2.8 <0.001 LV-18 segments PSD/ms 74.9±5.7 65.15±50 0.430 RVFWLS/% −18.3±11.6 −27.8±5.4 <0.001 RVGLS/% −17.6±4.3 −23.3±4.9 <0.001 RV-6 segments PSD/ms 46.8±24.6 32.9±18.1 0.043 SPWMD/ms 19.4±26.5 10.0±65.7 0.550 Yu index/ms 33.1±23.4 43.28±21.8 0.354 Left ventricular pre ejection time/ms 68.0±41.0 34.7±17.6 0.012 Right ventricular pre ejection time/ms 56.5±38.4 27.6±28.8 0.023 IVMD/ms 15.0±30.9 7.07±23.5 0.404 LVGLS: left ventricle global longitudinal strain; PSD: peak strain dispersion; RVFWLS: right ventricular free wall longitudinal strain; RVGLS: right ventricular global longitudinal strain; SPWMD: septal-posterior wall motion delay; IVMD: interventricular mechanical delay. 表 3 不同起搏位置Micra AV的心室收缩和不同步性比较
Table 3 Comparison of ventricular function and dyssynchrony of Micra AV at different pacing sites
Index High group (n=15) Middle group (n=22) Low group (n=6) P1 P2 P3 Right ventricular dyssynchrony RV-6 segments PSD/ms 40.5±25.9 40.9±25.0 77.7±25.4 0.96 0.02 0.02 Right ventricular systolic function RVFWLS/% −18.3±4.7 −17.6±3.6 −14.1±1.2 0.58 0.15 0.09 RVGLS/% −17.1±15.0 −20.2±6.7 −16.8±3.8 0.38 0.59 0.96 TAPSE/mm 17.7±4.7 15.7±3.7 18.0±5.2 0.18 0.39 0.91 RVEDV/mL 28.8±10.8 38.4±14.8 36.0±6.9 0.03 0.76 0.39 RVESV/mL 13.9±3.8 14.4±6.2 15.7±7.5 0.79 0.71 0.62 RVEF/% 62.0±9.9 61.3±10.8 51.8±13.9 0.10 0.92 0.02 Left ventricular systolic function LVEDV/mL 86.1±36.2 89.3±36.7 87.7±33.5 0.79 0.94 0.94 LVESV/mL 31.1±13.9 35.8±20.3 30.7±10.6 0.43 0.63 0.96 LVEF/% 54.9±22.6 54.6±54.9 63.3±6.4 0.96 0.49 0.52 LVGLS/% −19.7±2.6 −14.9±3.3 −15.1±3.3 0.01 0.93 0.02 Left ventricular dyssynchrony LV-18 segments PSD/ms 64.8±19.8 51.8±13.9 62.0±9.9 0.16 0.65 0.76 Yu index/ms 23.0±15.9 38.1±25.1 30.7±14.4 0.03 0.56 0.56 SPWMD/ms 17.3±20.3 23.0±50.7 18.7±16.2 0.67 0.86 0.95 Dyssynchrony between left and right ventricle IVMD/ms −1.4±14.4 15.6±33.2 28.7±9.2 0.06 0.43 0.08 PASP/mmHg 35.3±8.3 28.4±7.1 36.7±7.5 0.01 0.04 0.77 RVFWLS: right ventricular free wall longitudinal strain; RVGLS: right ventricular global longitudinal strain; TAPSE: tricuspid annular plane systolic excursion; RVEDV: right ventricular end-diastolic volume; RVESV: right ventricular end-systolic volume; RVEF: right ventricular ejection fraction; RV-FAC: right ventricular-fractional area change; LVEDV: left ventricular end-diastolic volume; LVESV: left ventricular end-systolic volume; LVEF: left ventricular ejection fraction; LVGLS: left ventricle global longitudinal strain; PSD: peak strain dispersion; SPWMD: septal-posterior wall motion delay; IVMD: interventricular mechanical delay; PASP: pulmonary artery systolic pressure. P1: high group vs middle group; P2: middle group vs low group; P3: high group vs low group. -
[1] IP J E, RASHTIAN M, EXNER D V, et al. Atrioventricular synchrony delivered by a dual-chamber leadless pacemaker system[J]. Circulation, 2024, 150(6): 439-450. DOI: 10.1161/CIRCULATIONAHA.124.069006
[2] BECCARINO N, SALEH M, EPSTEIN L M. Leadless pacemakers: where are we?[J]. Trends Cardiovasc Med, 2024, S1050-S1738(24): 00018-5.
[3] EL-CHAMI M F, BHATIA N K, MERCHANT F M. Atrio-ventricular synchronous pacing with a single chamber leadless pacemaker: programming and trouble shooting for common clinical scenarios[J]. J Cardiovasc Electrophysiol, 2021, 32(2): 533-539. DOI: 10.1111/jce.14807
[4] HRYMNIAK B, SKOCZYŃSKI P, BIEL B, et al. Atrioventricular synchronous leadless pacing: Micra AV[J]. Cardiol J, 2024, 31(1): 147-155. DOI: 10.5603/CJ.a2023.0035
[5] 盛琴慧. 起搏诱导心肌病: 器械升级的时机和策略[J]. 中国心脏起搏与心电生理杂志, 2023, 37(2): 95-98. SHENG Q H. Pacing-induced cardiomyopathy: timing and strategy of device upgrade[J]. Chin J Card Pacing Electrophysiol, 2023, 37(2): 95-98.
[6] 李 慧, 胡奕然, 顾 敏, 等. 实时三维超声心动图联合斑点追踪技术评价不同部位起搏对右室功能的影响[J]. 中国分子心脏病学杂志, 2020, 20(4): 3454-3458. LI H, HU Y R, GU M, et al. Assessment of right ventricular function after pacemaker implantation on different locations by real-time three-dimensional echocardiography combined with speckle tracking imaging[J]. Mol Cardiol China, 2020, 20(4): 3454-3458.
[7] DIAS-FRIAS A, COSTA R, CAMPINAS A, et al. Right ventricular septal versus apical pacing: long-term incidence of heart failure and survival[J]. J Cardiovasc Dev Dis, 2022, 9(12): 444.
[8] HECKMAN L I B, LUERMANS J G L M, CURILA K, et al. Comparing ventricular synchrony in left bundle branch and left ventricular septal pacing in pacemaker patients[J]. J Clin Med, 2021, 10(4): 822. DOI: 10.3390/jcm10040822
[9] TAYAL B, FRUELUND P, SOGAARD P, et al. Incidence of heart failure after pacemaker implantation: a nationwide Danish Registry-based follow-up study[J]. Eur Heart J, 2019, 40(44): 3641-3648. DOI: 10.1093/eurheartj/ehz584
[10] MOLINA L, SUTTON R, GANDOY W, et al. Medium-term effects of septal and apical pacing in pacemaker-dependent patients: a double-blind prospective randomized study[J]. Pacing Clin Electrophysiol, 2014, 37(2): 207-214. DOI: 10.1111/pace.12257
[11] GABRIELLI L, OCARANZA M P, SITGES M, et al. Acute effect of iloprost inhalation on right atrial function and ventricular dyssynchrony in patients with pulmonary artery hypertension[J]. Echocardiography, 2017, 34(1): 53-60. DOI: 10.1111/echo.13401
[12] 孙 超, 吴立群, 刘 丽, 等. 植入无导线房室同步起搏器Micra AV患者随访报告及最佳适应证分析[J]. 中国心脏起搏与心电生理杂志, 2022, 36(2): 103-106. SUN C, WU L Q, LIU L, et al. Optimal indications and limitations of Micra AV therapy: time to weigh the pros and cons in patient selection based on follow-up data from the first five implants in China[J]. Chin J Card Pacing Electrophysiol, 2022, 36(2): 103-106.
[13] KOWLGI G N, TSENG A S, TEMPEL N D, et al. A real-world experience of atrioventricular synchronous pacing with leadless ventricular pacemakers[J]. J Cardiovasc Electrophysiol, 2022, 33(5): 982-993. DOI: 10.1111/jce.15430
[14] 郑 泽, 史雨晨, 何松原, 等. Micra AV无导线起搏器植入术后随访优化对房室同步率的影响[J]. 中国介入心脏病学杂志, 2024, 32(2): 71-75. ZHENG Z, SHI Y C, HE S Y, et al. The impact of programming optimization for atrioventricular synchrony after Micra AV leadless pacemakers implantation[J]. Chin J Interv Cardiol, 2024, 32(2): 71-75.
[15] STEINWENDER C, KHELAE S K, GARWEG C, et al. Atrioventricular synchronous pacing using a leadless ventricular pacemaker: results from the MARVEL 2 study[J]. JACC Clin Electrophysiol, 2020, 6(1): 94-106. DOI: 10.1016/j.jacep.2019.10.017
[16] TROISI F, CACCAVO V P, SANTOBUONO V E, et al. Left atrial strain is a good predictor of atrio-ventricular synchrony in leadless pacemaker pacing[J]. J Cardiovasc Electrophysiol, 2024, 35(1): 155-161. DOI: 10.1111/jce.16140