文章快速检索     高级检索
   中国临床医学  2021, Vol. 28 Issue (1): 75-79      DOI: 10.12025/j.issn.1008-6358.2021.20201243
0
基于PET/CT后处理工作站行SPECT/CT骨定量分析的可行性
余浩军1,2,3 , 张一秋1,2,3 , 李蓓蕾1,2,3 , 石洪成1,2,3     
1. 复旦大学附属中山医院核医学科, 上海 200032;
2. 复旦大学核医学研究所, 上海 200032;
3. 上海市影像医学研究所, 上海 200032
摘要目的: 探讨单光子发射计算机断层成像术(SPECT/CT)和正电子发射断层成像术(PET/CT)后处理工作站对SPECT/CT骨定量分析数据进行定量分析结果的一致性,对比不同工作站测量病灶的最大标准摄取值(the maximum standardized uptake value,SUVmax)、平均标准摄取值(the average standardized uptake value,SUVave)、病灶体积和平均CT值的异同。方法: 回顾分析行全身骨显像及定量SPECT/CT显像且在SPECT/CT显像范围内目测不超过2个显像剂浓聚病灶的患者40例。男性23例,女性17例,年龄37~88岁,平均年龄(60.3±10.2)岁,共获得50个病灶。首先,采用“SyngoMI VB10B SPECT/CT工作站”三维(three-dimensional,3D)等高线容积感兴趣区(volume of interest,VOI)测量法,获得SUVmax、SUVave、病灶体积和平均CT值。然后,将数据导入PET/CT后处理工作站“uWS-MI”医学影像处理软件,采用自带的3D椭球体VOI测量法、自适应阈值分割测量法和固定阈值分割测量法进行上述指标的测量,分别比较其与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法测得的SUVmax、SUVave、病灶体积和平均CT值的差异是否有统计学意义。结果: 3D椭球体VOI测量法与3D等高线VOI测量法比较两组病灶SUVmax完全一致,但SUVavet=9.841,P < 0.001)、病灶体积(t=-4.314,P < 0.001)和平均CT值(t=12.554,P < 0.001)比较差异有统计学意义。自适应阈值分割测量法和固定阈值分割测量法对其中1例患者的毗邻腰椎和骶骨2处病灶无法准确分割。与3D等高线VOI测量法比较,其他39例患者的48处病灶的SUVmax完全一致。自适应阈值分割测量法与3D等高线VOI测量法比较,48处病灶的2组SUVavet=-0.723,P=0.473)、病灶体积(t=-1.407,P=0.166)和平均CT值(t=-0.735,P=0.466)的差异均无统计学意义。固定阈值分割测量法与3D等高线VOI测量法比较,48处病灶的2组SUVavet=2.947,P=0.473)、病灶体积(t=-2.003,P=0.051)的差异均无统计学意义,而平均CT值(t=-4.71,P < 0.001)的差异有统计学意义。结论: PET/CT后处理工作站“uWS-MI”医学影像处理软件对于定量SPECT/CT骨显像数据具有良好的兼容性,其3种测量方法对于SUVmax的测量均能获得一致的结果,但自适应阈值分割测量法和固定阈值分割测量法对于毗邻病灶的分割提取相应参数有一定的局限性。对于SUVave、病灶体积和平均CT值的数值会受不同测量方法的影响而不同。其中,自适应阈值分割测量法与3D等高线VOI测量法的测量结果差异无统计学意义。
关键词定量SPECT/CT    标准摄取值    “uWS-MI”医学影像处理软件    
Feasibility study of SPECT/CT bone quantitative analysis using PET/CT post-processing workstation
YU Hao-jun1,2,3 , ZHANG Yi-qiu1,2,3 , LI Bei-lei1,2,3 , SHI Hong-cheng1,2,3     
1. Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. Nuclear Medicine Institute of Fudan University, Shanghai 200032, China;
3. Shanghai Institute of Medical Imaging, Shanghai 200032, China
Abstract: Objective: To investigate the consistency of SPECT/CT and PET/CT post-processing workstations for quantitative analysis of SPECT/CT bone quantitative data, and compare the similarities and differences of the maximum standardized uptake value (SUVmax), the average standardized uptake value (SUVave), volume and average CT value of the lesions measured by different workstations. Methods: Forty patients who underwent whole-body bone scintigraphy and quantitative SPECT/CT imaging, and had no more than two hot spots within SPECT/CT imaging range were retrospectively analyzed. A total of 50 lesions were obtained. Three-dimensional (3D) isocontour volume of interest (VOI) method of "SyngoMI VB10B" SPECT/CT workstation was used to obtain the SUVmax, SUVave, volume, and average CT value of the lesions. Then the data were imported into the "uWS-MI" medical image processing software of PET/CT post-processing workstation. The above parameters were measured by 3D ellipsoid VOI method, adaptive threshold segmentation method, and fixed threshold segmentation method, respectively. The SUVmax, SUVave, volume, and average CT value measured by the three processing methods of "uWS-MI" workstation and 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation were compared respectively to see if the difference was statistically significant. Results: The SUVmax measured by the 3D ellipsoid VOI method of "uWS-MI" workstation and the 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation were completely consistent, but SUVave (t=9.841, P < 0.001), lesion volume (t=-4.314, P < 0.001) and average CT value (t=12.554, P < 0.001) were significantly different. The adaptive threshold segmentation method and the fixed threshold method of "uWS-MI" workstation can not accurately segment two adjacent lesions of the lumbar spine and sacrum in one patient. Comparing with the 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation, the SUVmax of 48 lesions in 39 other patients was completely the same. Comparing the adaptive threshold segmentation method of "uWS-MI" workstation with the 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation, the SUVave (t=-0.723, P=0.473), lesion volume (t=-1.407, P=0.166), and average CT value (t=-0.735, P=0.466) of the 48 lesions were not statistically different. Comparing the fixed threshold measurement method of "uWS-MI" workstation with the 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation, the SUVave (t=2.947, P=0.473) and lesion volume (t=-2.003, P=0.051) of 48 lesions were not statistically different, while the difference in average CT value (t=-4.71, P < 0.001) was statistically significant. Conclusions: "uWS-MI" medical image processing software of PET/CT post-processing workstation has good compatibility with the quantitative data of SPECT/CT bone imaging. The three methods of PET/CT post-processing workstation can obtain consistent results for the measurement of SUVmax. However, the adaptive threshold segmentation method and fixed threshold measurement method of "uWS-MI" workstation have certain limitations for extracting the corresponding parameters for the segmentation of adjacent lesions. The values of SUVave, volume, and average CT value will be affected by different measurement methods. There is no significant difference between the adaptive threshold segmentation method of "uWS-MI" workstation and the 3D isocontour VOI method of "SyngoMI VB10B" SPECT/CT workstation.
Key words: quantitative SPECT/CT    standardized uptake value    "uWS-MI" medical image processing software    

骨显像在临床上被广泛地应用于肿瘤骨转移、创伤、感染等骨骼系统疾病的诊断[1]。单光子发射计算机断层成像术(SPECT)/诊断CT既利用了SPECT图像反映骨骼的功能和代谢的特点,又能获得病变部位的诊断CT图像及精确的解剖定位,有效地提高诊断的准确性,在骨骼系统疾病的诊断方面应用更加广泛[2-6]。在SPECT/诊断CT的基础上,随着定量SPECT/CT的面世及逐步临床应用,不仅可以通过其诊断CT测定病灶的大小,观察溶骨性及成骨性骨质破坏的变化,定量分析骨质密度的改变,而且可以通过定量SPECT测定病灶的标准摄取值(standardized uptake value,SUV),反映骨骼的功能和代谢的变化程度[7-12]。本研究将探讨SPECT/CT和PET/CT后处理工作站对SPECT/CT骨定量分析数据进行定量分析结果的一致性,对比不同工作站测量病灶的最大标准摄取值(the maximum standardized uptake value,SUVmax)、平均标准摄取值(the average standardized uptake value,SUVave)、病灶体积和平均CT值的异同,评估PET/CT后处理工作站用于定量SPECT/CT骨显像后处理分析的可行性。

1 资料与方法 1.1 一般资料

回顾分析行全身骨显像及定量SPECT/CT显像且在SPECT/CT显像范围内目测不超过2个显像剂浓聚病灶的患者40例。男性23例,女性17例,年龄37~88岁,平均年龄(60.3±10.2)岁。共获得50个病灶:脊柱(颈椎、胸椎和腰椎)18处,胸廓(包括肋骨、锁骨、胸骨和肩胛骨)15处,骨盆(包括髋骨、骶骨和骶髂区)12处,四肢4处,颅骨1处。

1.2 检查方法与仪器

静脉注射99mTc-MDP(上海欣科医药有限公司),(900.5±44.9)MBq,(744~932)MBq后(298.1±54.6)min,(220~402)min,采用低能高分辨率准直器,按照常规方法行全身骨显像。由核医学医师阅片后,对无法明确诊断的病灶行定量SPECT/CT显像,以病灶部位为中心,分别采集SPECT和CT图像。CT采集条件是130 kV、160 mAs,视野500 mm,层厚3 mm,层间距2 mm。SPECT图像采集的条件是双探头平行采集,分别旋转180°,共采集60帧,每帧采集10 s,矩阵256×256。采用OSCG+enhanced算法重建,24次迭代,2个子集,采用CT进行衰减校正和散射校正。显像仪器为德国西门子公司定量SPECT/CT(Siemens Intevo 16)。

1.3 图像分析与处理

首先,将经过重建得到的图像在德国西门子公司推荐的“SyngoMI VB10B SPECT/CT工作站”处理,采用三维(three-dimensional,3D)等高线容积感兴趣区(volume of interest,VOI)测量法,在横断面热区病灶上放置3D椭圆球体VOI,结合矢状位和冠状位图像,根据病灶在SPECT图像和CT图像上的形态和边界,手动调整VOI的大小、位置及SUV阈值,确保整个热区病灶能被完整包括。计算机自动生成根据SUV阈值进行分割的等高线VOI,获得SUVmax、SUVave、病灶体积和平均CT值。然后,将数据导入由上海联影医疗科技有限公司研发的PET后处理工作站“uWS-MI”医学影像处理软件,采用自带的3种方法进行上述指标的测量。包括(1)3D椭球体VOI测量法。(2)自适应阈值分割测量法:开启系统悬停属性,悬停类型选择VOI,选择自适应阈值分割方法,自适应比重默认选择0.5,在横断面病灶区域绘制椭球体,程序以椭球的中心为初始阈值开始迭代,迭代算法收敛,得到分割阈值;系统按照此阈值分割病灶,得到病灶的轮廓,必要时调整自适应比重,使得病灶被完全包括。(3)固定阈值分割测量法:软件默认设置的分割阈值为2.5,在横断面病灶区域绘制椭圆球体VOI,结合矢状位和冠状位图像,调整分割阈值的大小,使得病灶被完整包括在VOI内。

1.4 统计学处理

采用SPSS 22.0进行统计学分析,分别比较“uWS-MI”医学影像处理软件3D椭球体VOI测量法、自适应阈值分割测量法、固定阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法测得的SUVmax、SUVave、病灶体积和平均CT值的差异是否有统计学意义。

2 结果

PET/CT后处理工作站“uWS-MI”医学影像处理软件3D椭球体VOI测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,40例患者50处病灶的2组SUVmax完全一致,但2组病灶的SUVave(t=9.841,P < 0.001)、病灶体积(t=-4.314,P < 0.001)和平均CT值(t=12.554,P < 0.001)比较差异有统计学意义。

“uWS-MI”医学影像处理软件自适应阈值分割测量法和固定阈值分割测量法对其中1例患者的毗邻腰椎和骶骨2处退行性病变的病灶无法准确分割,只能作为一个整体获得相应参数(图 1),其他39例患者的48处病灶与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,SUVmax完全一致。“uWS-MI”医学影像处理软件自适应阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,48处病灶的2组SUVave(t=-0.723,P=0.473)、病灶体积(t=-1.407,P=0.166)和平均CT值(t=-0.735,P=0.466)的差异无统计学意义。固定阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,48处病灶的两组SUVave(t=2.947,P=0.473)、病灶体积(t=-2.003,P=0.051)的差异无统计学意义,而平均CT值(t=-4.71,P < 0.001)的差异有统计学意义。

图 1 分别采用“SyngoMI VB10B SPECT/CT工作站”和“uWS-MI”医学影像处理软件不同的测量方法生成的感兴趣区获得病灶的最大SUV、平均SUV、病灶体积和平均CT值 A:3D等高线VOI测量法;B:3D椭球体VOI测量法;C:自适应阈值分割测量法;D:固定阈值分割测量法。
3 讨论

全身骨显像因具有高灵敏性而被广泛应用于骨骼疾病的诊断。当骨骼局部的血流异常或骨矿物质代谢改变时,导致显像剂摄取异常,长期以来判断骨显像显像剂摄取异常的程度差别是通过视觉观察,缺乏客观的定量指标。尤其当同一患者前后2次显像对比时,即使在前后2次显像使用显像剂的剂量、显像条件等都相同的条件下,2次显像图像的阅读还受到图像本身灰阶调节及其与本底对比差异的影响。单纯通过视觉观察辨别显像剂摄取增强或减淡,尤其对于前后2次差异不甚明显的情况下,很容易出现判断错误,缺乏对显像剂摄取程度判断客观的定量评价依据。

SUV是PET显像中最常用的半定量指标,它是指局部组织摄取的显像剂的放射性活度与全身平均放射性活度的比值[13-14]。随着定量SPECT/CT在临床上逐步应用,将SUV引入SPECT/CT显像处理中,使得反映骨骼的功能和代谢的显像剂浓聚程度有了客观的半定量分析的指标。SUV除了与受检者病灶本身、患者体质量、成像设备及采集条件、显像剂注射剂量、注射后显像时间有关外,还与软件后处理的重建算法、后处理操作人员对VOI轮廓勾画方法的差异相关[15-16]。PET/CT后处理工作站“uWS-MI”医学影像处理软件通过计算机数字图像处理技术,对符合DICOM 3.0标准的影像数据进行后处理及图像融合。本研究中,将定量SPECT/CT骨显像得到的DICOM格式的SPECT与CT图像数据能直接导入“uWS-MI”医学影像处理软件系统,说明该系统具有良好的兼容性。“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法的横断位、冠状位和矢状位图像可同时显示,而且可手动调整默认感兴趣的范围,使其尽可能地包括目标病灶,软件根据设定的SUV阈值对病灶进行分割,得到反映病灶轮廓的VOI。“uWS-MI”医学影像处理软件3D椭球体VOI测量法,是在横断面热区病灶上放置3D椭圆球体VOI,结合矢状位和冠状位图像,根据病灶在SPECT图像和CT图像上的形态和边界,手动调整VOI的大小及位置,确保整个热区病灶能被完整包括。本研究结果显示,“uWS-MI”医学影像处理软件3D椭球体VOI测量法能勾画所有目标病灶,并获得与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法相同的SUVmax,但是两者勾画的范围不一致,导致SUVave、病灶体积和平均CT值有显著差异。“uWS-MI”医学影像处理软件自适应阈值分割测量法和固定阈值分割测量法对其中1例患者的毗邻腰椎和骶骨2处病灶无法准确分割,即使通过调整自适应比重或SUV阈值的方法仍然只能作为一个整体获得相应参数,因此,对于毗邻病灶的分割提取相应参数有一定的局限性。

本研究结果显示,“uWS-MI”医学影像处理软件自适应阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,48处病灶的2组SUVave、病灶体积和平均CT值的差异均无统计学意义,说明2种测量方法勾画得到的病灶范围的一致性较好。固定阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法比较,48处病灶的2组SUVave、病灶体积的差异无统计学意义,而平均CT值的差异有统计学意义,说明2种方法勾画得到的病灶范围仍存在差异。

综上所述,PET/CT后处理工作站“uWS-MI”医学影像处理软件对于定量SPECT/CT骨显像数据具有良好的兼容性,其自带的3种方法对于SUVmax的测量均能获得一致的结果。但“uWS-MI医学影像处理软件”自适应阈值分割测量法和固定阈值分割测量法对于毗邻病灶的分割提取相应参数有一定的局限性,SUVave、病灶体积和平均CT值会受不同测量方法的影响而不同,其中,“uWS-MI”医学影像处理软件自适应阈值分割测量法与“SyngoMI VB10B SPECT/CT工作站”3D等高线VOI测量法的测量结果差异无统计学意义。

参考文献
[1]
LOVE C, DIN A S, TOMAS M B, et al. Radionuclide bone imaging: an illustrative review[J]. Radiographics, 2003, 23(2): 341-358. [DOI]
[2]
ZHAO Z, LI L, LI F, et al. Single photon emission computed tomography/spiral computed tomography fusion imaging for the diagnosis of bone metastasis in patients with known cancer[J]. Skeletal Radiol, 2010, 39(2): 147-153. [DOI]
[3]
张一秋, 石洪成, 陈曙光, 等. SPECT/CT融合图像对脊柱单发病灶鉴别诊断的增益价值[J]. 中国临床医学, 2010, 17(5): 741-744. [CNKI]
[4]
SHARMA P, SINGH H, KUMAR R, et al. Bone scintigraphy in breast cancer: added value of hybrid SPECT-CT and its impact on patient management[J]. Nucl Med Commun, 2012, 33(2): 139-147. [DOI]
[5]
ZHANG Y, SHI H, LI B, et al. The added value of SPECT/spiral CT in patients with equivocal bony metastasis from hepatocellular carcinoma[J]. Nuklearmedizin, 2015, 54(6): 255-261. [DOI]
[6]
ZHANG Y, LI B, SHI H, et al. Added value of SPECT/spiral CT versus SPECT or CT alone in diagnosing solitary skeletal lesions[J]. Nuklearmedizin, 2017, 56(4): 139-145. [DOI]
[7]
KIM J, LEE H H, KANG Y, et al. Maximum standardised uptake value of quantitative bone SPECT/CT in patients with medial compartment osteoarthritis of the knee[J]. Clin Radiol, 2017, 72(7): 580-589. [DOI]
[8]
KITAJIMA K, FUTANI H, FUJIWARA M, et al. Usefulness of quantitative bone single-photon emission computed tomography/computed tomography for evaluating response to neoadjuvant chemotherapy in a patient with periosteal osteosarcoma[J]. Cureus, 2018, 10(11): e3655. [URI]
[9]
LEE W W, K-SPECT GROUP. Clinical applications of technetium-99m quantitative single-photon emission computed tomography/computed tomography[J]. Nucl Med Mol Imaging, 2019, 53(3): 172-181. [DOI]
[10]
WANG R, DUAN X, SHEN C, et al. A retrospective study of SPECT/CT scans using SUV measurement of the normal pelvis with Tc-99m methylene diphosphonate[J]. J Xray Sci Technol, 2018, 26(6): 895-908.
[11]
KUJI I, YAMANE T, SETO A, et al. Skeletal standardized uptake values obtained by quantitative SPECT/CT as an osteoblastic biomarker for the discrimination of active bone metastasis in prostate cancer[J]. Eur J Hybrid Imaging, 2017, 1(1): 2. [DOI]
[12]
YAMANE T, KUJI I, SETO A, et al. Quantification of osteoblastic activity in epiphyseal growth plates by quantitative bone SPECT/CT[J]. Skeletal Radiol, 2018, 47(6): 805-810. [DOI]
[13]
LI X, ZHANG H, XING L, et al. Predictive value of primary fluorine-18 fluorodeoxyglucose standard uptake value for a better choice of systematic nodal dissection or sampling in clinical stage ⅠA non-small-cell lung cancer[J]. Clin Lung Cancer, 2013, 14(5): 568-573. [DOI]
[14]
LUBOLDT W, WIEDEMANN B, FISCHER S, et al. Focal colorectal uptake in 18FDG-PET/CT: maximum standard uptake value as a trigger in a semi-automated screening setting[J]. Eur J Med Res, 2016, 21: 2. [DOI]
[15]
GEAR J I, COX M G, GUSTAFSSON J, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations[J]. Eur J Nucl Med Mol Imaging, 2018, 45(13): 2456-2474. [DOI]
[16]
PETERS S M B, VAN DER WERF N R, SEGBERS M, et al. Towards standardization of absolute SPECT/CT quantification: a multi-center and multivendor phantom study[J]. EJNMMI Physics, 2019, 6(1): 29. [DOI]

文章信息

引用本文
余浩军, 张一秋, 李蓓蕾, 石洪成. 基于PET/CT后处理工作站行SPECT/CT骨定量分析的可行性[J]. 中国临床医学, 2021, 28(1): 75-79.
YU Hao-jun, ZHANG Yi-qiu, LI Bei-lei, SHI Hong-cheng. Feasibility study of SPECT/CT bone quantitative analysis using PET/CT post-processing workstation[J]. Chinese Journal of Clinical Medicine, 2021, 28(1): 75-79.
通信作者(Corresponding authors).
张一秋. Tel: 021-64041990, E-mail: zhang.yiqiu@zs-hospital.sh.cn.
基金项目
上海市卫生健康委员会科研课题面上项目(201740201),上海市2020年度“科技创新行动计划”技术标准项目(20DZ2201800),上海市医苑新星青年医学人才培养(医学影像项目)资助计划(沪卫人事[2020]087号),上海市临床重点专科项目(shslczdzk03401),西门子医疗科技有限公司资助项目(H2019-101)
Foundation item
Supported by the Scientific Research Program of Shanghai Municipal Health Commission (201740201), Shanghai Science and Technology Committee(20DZ2201800), Shanghai Yiyuan New Star Youth Medical Talent Training (Medical Imaging Project) Program (Shanghai Medical Personnel [2020] No. 087), Shanghai Municipal Key Clinical Specialty Program(shslczdzk03401), and Siemens Healthineers Ltd (H2019-101)

工作空间