Advanced Search
Expert Group for Precise Classification and Diagnosis of Acute Respiratory Distress Syndrome,. Expert consensus on the precise classification and diagnosis of acute respiratory distress syndrome[J]. Chin J Clin Med, xxxx, xx(x): 1-7. DOI: 10.12025/j.issn.1008-6358.2025.20250379
Citation: Expert Group for Precise Classification and Diagnosis of Acute Respiratory Distress Syndrome,. Expert consensus on the precise classification and diagnosis of acute respiratory distress syndrome[J]. Chin J Clin Med, xxxx, xx(x): 1-7. DOI: 10.12025/j.issn.1008-6358.2025.20250379

Expert consensus on the precise classification and diagnosis of acute respiratory distress syndrome

Funds: Supported by National Key R&D Program (2021YFC2501800), the Key Discipline Construction Project of Shanghai Municipal Health Commission (2023ZDFC0101), the Science and Technology Committee of Shanghai Municipality (23Y31900100, 21MC1930400).
More Information
  • Received Date: March 29, 2025
  • Accepted Date: April 12, 2025
  • Available Online: April 20, 2025
  • Acute respiratory distress syndrome (ARDS) is a common critical illness in clinical practice, with a high mortality rate. Given the limited traditional treatment options for ARDS and the high heterogeneity among patients, most clinical trials have failed to yield positive results. Precision medicine aims to address this challenge by refining ARDS subphenotypes and tailoring therapeutic strategies to distinct patient subgroups, thereby improving clinical outcomes and reducing mortality. This consensus statement synthesizes clinical researches and expert recommendations to propose actionable frameworks for precision phenotyping and targeted treatment of ARDS. The goal is to provide clinicians with evidence-based guidance and accelerate the advancement of precision diagnosis and management in ARDS.

  • [1]
    GRASSELLI G, CALFEE C S, CAMPOROTA L, et al. ESICM guidelines on acute respiratory distress syndrome: definition, phenotyping and respiratory support strategies[J]. Intensive Care Med, 2023, 49(7): 727-759. DOI: 10.1007/s00134-023-07050-7
    [2]
    KHAN Y A, FAN E, FERGUSON N D. Precision medicine and heterogeneity of treatment effect in therapies for ARDS[J]. Chest, 2021, 160(5): 1729-1738. DOI: 10.1016/j.chest.2021.07.009
    [3]
    SHAH F A, MEYER N J, ANGUS D C, et al. A research agenda for precision medicine in sepsis and acute respiratory distress syndrome: an official American Thoracic Society research statement[J]. Am J Respir Crit Care Med, 2021, 204(8): 891-901. DOI: 10.1164/rccm.202108-1908ST
    [4]
    GORDON A C, ALIPANAH-LECHNER N, BOS L D, et al. From ICU syndromes to ICU subphenotypes: consensus report and recommendations for developing precision medicine in the ICU[J]. Am J Respir Crit Care Med, 2024, 210(2): 155-166. DOI: 10.1164/rccm.202311-2086SO
    [5]
    孙 健, 罗 悦, 邵 勉, 等. 精准分型指导ARDS临床精准救治[J]. 中华急诊医学杂志, 2022, 31(8): 1005-1009.

    SUN J, LUO Y, SHAO M, et al. Precise classification guides clinical precision treatment of ARDS[J]. Chin J Emerg Med, 2022, 31(8): 1005-1009.
    [6]
    尹 俊, 宋振举. ARDS的精准治疗[J]. 武汉大学学报(医学版), 2023, 44(11): 1291-1295.

    YIN J, SONG Z J. Precision medicine for the treatment of ARDS[J]. Med J Wuhan Univ, 2023, 44(11): 1291-1295.
    [7]
    LEONARD J, SINHA P. Precision medicine in acute respiratory distress syndrome: progress, challenges, and the road ahead[J]. Clin Chest Med, 2024, 45(4): 835-848. DOI: 10.1016/j.ccm.2024.08.005
    [8]
    CALFEE C S, JANZ D R, BERNARD G R, et al. Distinct molecular phenotypes of direct vs indirect ARDS in single-center and multicenter studies[J]. Chest, 2015, 147(6): 1539-1548. DOI: 10.1378/chest.14-2454
    [9]
    TORBIC H, BULGARELLI L, DELIBERATO R O, et al. Potential impact of subphenotyping in pharmacologic management of acute respiratory distress syndrome[J]. J Pharm Pract, 2024, 37(4): 955-966. DOI: 10.1177/08971900231185392
    [10]
    CALFEE C S, DELUCCHI K L, SINHA P, et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin: secondary analysis of a randomised controlled trial[J]. Lancet Respir Med, 2018, 6(9): 691-698. DOI: 10.1016/S2213-2600(18)30177-2
    [11]
    SHAVER C M, BASTARACHE J A. Clinical and biological heterogeneity in acute respiratory distress syndrome: direct versus indirect lung injury[J]. Clin Chest Med, 2014, 35(4): 639-653. DOI: 10.1016/j.ccm.2014.08.004
    [12]
    AL-HUSINAT L, AZZAM S, AL SHARIE S, et al. A narrative review on the future of ARDS: evolving definitions, pathophysiology, and tailored management[J]. Crit Care, 2025, 29(1): 88. DOI: 10.1186/s13054-025-05291-0
    [13]
    CALFEE C S, DELUCCHI K, PARSONS P E, et al. Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials[J]. Lancet Respir Med, 2014, 2(8): 611-620. DOI: 10.1016/S2213-2600(14)70097-9
    [14]
    BLANCHARD F, JAMES A, ASSEFI M, et al. Personalized medicine targeting different ARDS phenotypes: the future of pharmacotherapy for ARDS?[J]. Expert Rev Respir Med, 2023, 17(1): 41-52. DOI: 10.1080/17476348.2023.2176302
    [15]
    SIMONIS F D, DE IUDICIBUS G, CREMER O L, et al. Macrolide therapy is associated with reduced mortality in acute respiratory distress syndrome (ARDS) patients[J]. Ann Transl Med, 2018, 6(2): 24. DOI: 10.21037/atm.2017.12.25
    [16]
    SINHA P, FURFARO D, CUMMINGS M J, et al. Latent class analysis reveals COVID-19-related acute respiratory distress syndrome subgroups with differential responses to corticosteroids[J]. Am J Respir Crit Care Med, 2021, 204(11): 1274-1285. DOI: 10.1164/rccm.202105-1302OC
    [17]
    FAMOUS K R, DELUCCHI K, WARE L B, et al. Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy[J]. Am J Respir Crit Care Med, 2017, 195(3): 331-338. DOI: 10.1164/rccm.201603-0645OC
    [18]
    FILIPPINI D F L, SMIT M R, BOS L D J. Subphenotypes in acute respiratory distress syndrome: universal steps toward treatable traits[J]. Anesth Analg, 2024. Online ahead of print.
    [19]
    WENDEL GARCIA P D, CACCIOPPOLA A, COPPOLA S, et al. Latent class analysis to predict intensive care outcomes in acute respiratory distress syndrome: a proposal of two pulmonary phenotypes[J]. Crit Care, 2021, 25(1): 154. DOI: 10.1186/s13054-021-03578-6
    [20]
    FILIPPINI D F L, DI GENNARO E, VAN AMSTEL R B E, et al. Latent class analysis of imaging and clinical respiratory parameters from patients with COVID-19-related ARDS identifies recruitment subphenotypes[J]. Crit Care, 2022, 26(1): 363. DOI: 10.1186/s13054-022-04251-2
    [21]
    CONSTANTIN J M, GRASSO S, CHANQUES G, et al. Lung morphology predicts response to recruitment maneuver in patients with acute respiratory distress syndrome[J]. Crit Care Med, 2010, 38(4): 1108-1117. DOI: 10.1097/CCM.0b013e3181d451ec
    [22]
    CHEN H, SUN Q, CHAO Y L, et al. Lung morphology impacts the association between ventilatory variables and mortality in patients with acute respiratory distress syndrome[J]. Crit Care, 2023, 27(1): 59. DOI: 10.1186/s13054-023-04350-8
    [23]
    PUYBASSET L, CLUZEL P, GUSMAN P, et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group[J]. Intensive Care Med, 2000, 26(7): 857-869. DOI: 10.1007/s001340051274
    [24]
    COPPOLA S, POZZI T, GURGITANO M, et al. Radiological pattern in ARDS patients: partitioned respiratory mechanics, gas exchange and lung recruitability[J]. Ann Intensive Care, 2021, 11(1): 78. DOI: 10.1186/s13613-021-00870-0
    [25]
    PUYBASSET L, GUSMAN P, MULLER J C, et al. Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end-expiratory pressure[J]. Intensive Care Med, 2000, 26(9): 1215-1227. DOI: 10.1007/s001340051340
    [26]
    CONSTANTIN J M, JABAUDON M, LEFRANT J Y, et al. Personalised mechanical ventilation tailored to lung morphology versus low positive end-expiratory pressure for patients with acute respiratory distress syndrome in France (the LIVE study): a multicentre, single-blind, randomised controlled trial[J]. Lancet Respir Med, 2019, 7(10): 870-880. DOI: 10.1016/S2213-2600(19)30138-9
    [27]
    LI D X, ZHANG X B, ZHU Z R, et al. Subphenotypes and precision medicine in acute respiratory distress syndrome[J]. Zhonghua Jie He He Hu Xi Za Zhi, 2024, 47(6): 560-566.
    [28]
    LEONHARDT S, LACHMANN B. Electrical impedance tomography: the holy grail of ventilation and perfusion monitoring?[J]. Intensive Care Med, 2012, 38(12): 1917-1929. DOI: 10.1007/s00134-012-2684-z
    [29]
    BECHER T, BUCHHOLZ V, HASSEL D, et al. Individualization of PEEP and tidal volume in ARDS patients with electrical impedance tomography: a pilot feasibility study[J]. Ann Intensive Care, 2021, 11(1): 89. DOI: 10.1186/s13613-021-00877-7
    [30]
    FRANCHINEAU G, JONKMAN A H, PIQUILLOUD L, et al. Electrical impedance tomography to monitor hypoxemic respiratory failure[J]. Am J Respir Crit Care Med, 2024, 209(6): 670-682. DOI: 10.1164/rccm.202306-1118CI
    [31]
    VAN AMSTEL R B E, BARTEK B, VLAAR A P J, et al. Temporal transitions of the hyperinflammatory and hypoinflammatory phenotypes in critical illness[J]. Am J Respir Crit Care Med, 2025, 211(3): 347-356. DOI: 10.1164/rccm.202406-1241OC
    [32]
    PATTANAYAK P, SINGH S K, GULATI M, et al. Microfluidic chips: recent advances, critical strategies in design, applications and future perspectives[J]. Microfluid Nanofluidics, 2021, 25(12): 99. DOI: 10.1007/s10404-021-02502-2

Catalog

    Article views (44) PDF downloads (29) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return