Citation: | HAN Xiao-dan, SUN Min-li. Effect of sevoflurane on hippocampal gene expression in C57BL/6 mice[J]. Chin J Clin Med, 2020, 27(4): 628-634. DOI: 10.12025/j.issn.1008-6358.2020.20200904 |
In this study, the effect of sevoflurane on gene expression in hippocampus of mice was studied by microarray analysis.
Twelve postnatal day 7 (P7) C57BL/6 male mice were exposed to sevoflurane (concentration: 2.5%; RS group) or air (C group) for 2 h every day for 5 consecutive days (n=6 in each group), RNA was extracted from the hippocampus for gene expression profile analysis after the mice were sacrificed.
Compared to C group, 30 genes, including 16 up-regulated and 14 down-regulated genes, were significantly changed (>1.5 or < 1.5 fold) (P < 0.05). And these genes are mainly involved in learning and memory, cognition, cell metabolism, signal transduction and communication, etc.. We randomly chose 9 differential genes to verify the microarray results and found that 3 genes (Ppp1r1b, Id1, and Txnip) were up-regulated and 5 genes (Arc, c-Fos, Npas4, Grin2a and, Kcnj2) were down-regulated.
Sevoflurane induces expression changes of some crucial genes in mouse hippocampus, which may be related to the cognitive impairment or the other neurological diseases.
[1] |
JÖHR M, BERGER T M. Paediatric anaesthesia and inhalation agents[J]. Best Pract Res Clin Anaesthesiol, 2005, 19(3):501-522. DOI: 10.1016/j.bpa.2005.01.001
|
[2] |
ANDROPOULOS D B, GREENE M F. Anesthesia and developing brains-implications of the FDA warning[J]. N Engl J Med, 2017, 376(10):905-907. DOI: 10.1056/NEJMp1700196
|
[3] |
HAN X D, ZHANG X G, ZHANG X G, et al. Sevoflurane induces long-term memory impairment and increases MeCP2 phosphorylation in developing mice[J]. Int J Clin Exp Med, 2017, 10(2):2897-2903. http://www.researchgate.net/publication/316880675_Sevoflurane_induces_long-term_memory_impairment_and_increases_MeCP2_phosphorylation_in_developing_mice
|
[4] |
SATOMOTO M, SATOH Y, TERUI K, et al. Neonatal exposure to sevoflurane induces abnormal social behaviors and deficits in fear conditioning in mice[J]. Anesthesiology, 2009, 110(3):628-637. DOI: 10.1097/ALN.0b013e3181974fa2
|
[5] |
SHEN X, DONG Y, XU Z, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment[J]. Anesthesiology, 2013, 118(3):502-515. DOI: 10.1097/ALN.0b013e3182834d77
|
[6] |
TAO G, ZHANG J, ZHANG L, et al. Sevoflurane induces tau phosphorylation and glycogen synthase kinase 3β activation in young mice[J]. Anesthesiology, 2014, 121(3):510-527. DOI: 10.1097/ALN.0000000000000278
|
[7] |
LU H, LIUFU N, DONG Y, et al. Sevoflurane acts on ubiquitination-proteasome pathway to reduce postsynaptic density 95 protein levels in young mice[J]. Anesthesiology, 2017, 127(6):961-975. DOI: 10.1097/ALN.0000000000001889
|
[8] |
LUCCHINETTI E, AGUIRRE J, FENG J, et al. Molecular evidence of late preconditioning after sevoflurane inhalation in healthy volunteers[J]. Anesth Analg, 2007, 105(3):629-640. DOI: 10.1213/01.ane.0000278159.88636.aa
|
[9] |
SAKAMOTO A, IMAI J, NISHIKAWA A, et al. Influence of inhalation anesthesia assessed by comprehensive gene expression profiling[J]. Gene, 2005, 356:39-48. DOI: 10.1016/j.gene.2005.03.022
|
[10] |
PAN Z, LU X F, SHAO C, et al. The effects of sevoflurane anesthesia on rat hippocampus:a genomic expression analysis[J]. Brain Res, 2011, 1381:124-133. DOI: 10.1016/j.brainres.2011.01.020
|
[11] |
ZHOU H, LI S, NIU X, et al. Protective effect of FTY720 against sevoflurane-induced developmental neurotoxicity in rats[J]. Cell Biochem Biophys, 2013, 67(2):591-598. DOI: 10.1007/s12013-013-9546-3
|
[12] |
YANG H K, CHUNGH D S, HWANG J M. The effect of general anesthesia and strabismus surgery on the intellectual abilities of children:a pilot study[J]. Am J Ophthalmol, 2012, 153(4):609-613. DOI: 10.1016/j.ajo.2011.09.014
|
[13] |
WANG X, DONG Y, ZHANG Y, et al. Sevoflurane induces cognitive impairment in young mice via autophagy[J]. PLoS One, 2019, 14(5):e0216372. DOI: 10.1371/journal.pone.0216372
|
[14] |
WANG K, TIAN Y, ZHANG Y, et al. Toxicity mechanism of sevoflurane in neural stem cells of rats through DNA methylation[J]. Exp Ther Med, 2019, 18(1):237-241. http://www.researchgate.net/publication/332949451_Toxicity_mechanism_of_sevoflurane_in_neural_stem_cells_of_rats_through_DNA_methylation
|
[15] |
HU X, HU X, HUANG G. LncRNA MALAT1 is involved in sevoflurane-induced neurotoxicity in developing rats[J]. J Cell Biochem, 2019, 120(10):18209-18218. DOI: 10.1002/jcb.29127
|
[16] |
LIU F, RAINOSEK S W, FRISCH-DAIELLO J L, et al. Potential adverse effects of prolonged sevoflurane exposure on developing monkey brain:from abnormal lipid metabolism to neuronal damage[J]. Toxicol Sci, 2015, 147(2):562-572. DOI: 10.1093/toxsci/kfv150
|
[17] |
GUZOWSKI J F, LYFORD G L, STEVENSON G D, et al. Inhibition of activity-dependent arc protein expression in the rat hippocampus impairs the maintenance of long-term potentiation and the consolidation of long-term memory[J]. J Neurosci, 2000, 20(11):3993-4001. DOI: 10.1523/JNEUROSCI.20-11-03993.2000
|
[18] |
MCINTYRE C K, MIYASHITA T, SETLOW B, et al. Memory-influencing intra-basolateral amygdala drug infusions modulate expression of Arc protein in the hippocampus[J]. Proc Natl Acad Sci U S A, 2005, 102(30):10718-10723. DOI: 10.1073/pnas.0504436102
|
[19] |
PLOSKI J E, PIERRE V J, SMUCNY J, et al. The activity-regulated cytoskeletal-associated protein (Arc/Arg3.1) is required for memory consolidation of pavlovian fear conditioning in the lateral amygdala[J]. J Neurosci, 2008, 28(47):12383-12395. DOI: 10.1523/JNEUROSCI.1662-08.2008
|
[20] |
GUZOWSKI J F. Insights into immediate-early gene function in hippocampal memory consolidation using antisense oligonucleotide and fluorescent imaging approaches[J]. Hippocampus, 2002, 12(1):86-104. DOI: 10.1002/hipo.10010
|
[21] |
KATCHE C, BEKINSCHTEIN P, SLIPCZUK L, et al. Delayed wave of c-Fos expression in the dorsal hippocampus involved specifically in persistence of long-term memory storage[J]. Proc Natl Acad Sci U S A, 2010, 107(1):349-354. DOI: 10.1073/pnas.0912931107
|
[22] |
RAWAT V, GOUX W, PIECHACZYK M, et al. c-fos protects neurons through a noncanonical mechanism involving HDAC3 interaction:Identification of a 21-amino acid fragment with neuroprotective activity[J]. Mol Neurobiol, 2016, 53(2):1165-1180. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4731312/
|
[23] |
WENG F J, GARCIA R I, LUTZU S, et al. Npas4 is a critical regulator of learning-induced plasticity at mossy Fiber-CA3 synapses during contextual memory formation[J]. Neuron, 2018, 97(5):1137-1152.e5. DOI: 10.1016/j.neuron.2018.01.026
|
[24] |
HARTZELL A L, MARTYNIUK K M, BRIGIDI G S, et al. NPAS4 recruits CCK basket cell synapses and enhances cannabinoid-sensitive inhibition in the mouse hippocampus[J]. Elife, 2018, 7:e35927. DOI: 10.7554/eLife.35927
|
[25] |
BLOODGOOD B L, SHARMA N, BROWNE H A, et al. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition[J]. Nature, 2013, 503(7474):121-125. DOI: 10.1038/nature12743
|
[26] |
COUTELLIER L, BERAKI S, ARDESTANI P M, et al. Npas4:a neuronal transcription factor with a key role in social and cognitive functions relevant to developmental disorders[J]. PLoS One, 2012, 7(9):e46604. DOI: 10.1371/journal.pone.0046604
|
[27] |
STREHLOW V, HEYNE H O, VLASKAMP D R M, et al. GRIN2A-related disorders:genotype and functional consequence predict phenotype[J]. Brain, 2019, 142(1):80-92. http://www.research.ed.ac.uk/portal/files/78217483/untitled.pdf
|
[28] |
ALHAWITI N M, AL MAHRI S, AZIZ M A, et al. TXNIP in metabolic regulation:Physiological role and therapeutic outlook[J]. Curr Drug Targets, 2017, 18(9):1095-1103. http://europepmc.org/articles/PMC5543564/
|
[29] |
AVANES A, LENZ G, MOMAND J. Darpp-32 and t-Darpp protein products of PPP1R1B:Old dogs with new tricks[J]. Biochem Pharmacol, 2019, 160:71-79. DOI: 10.1016/j.bcp.2018.12.008
|
[30] |
SACHDEVA R, WU M, SMILJANIC S, et al. ID1 is critical for tumorigenesis and regulates chemoresistance in glioblastoma[J]. Cancer Res, 2019, 79(16):4057-4071. DOI: 10.1158/0008-5472.CAN-18-1357
|
[31] |
FUKUMURA S, YAMAUCHI K, KAWANABE A, et al. Functional analysis of a double-point mutation in the KCNJ2 gene identified in a family with Andersen-Tawil syndrome[J]. J Neurol Sci, 2019, 407:116521. DOI: 10.1016/j.jns.2019.116521
|
[32] |
PAWLOWSKI T L, BELLUSH L L, WRIGHT A W, et al. Hippocampal gene expression changes during age-related cognitive decline[J]. Brain Res, 2009, 1256:101-110. DOI: 10.1016/j.brainres.2008.12.039
|