文章快速检索     高级检索
   中国临床医学  2024, Vol. 31 Issue (1): 154-160      DOI: 10.12025/j.issn.1008-6358.2024.20222305
0
经导管主动脉瓣置换术后冠状动脉阻塞的风险因素及预防研究进展
印敏燕1,2 , 陆云涛3 , 魏来3 , 王小林1     
1. 上海市影像医学研究所,上海 200032;
2. 复旦大学附属中山医院放射科,上海 200032;
3. 复旦大学附属中山医院心外科,上海 200032
摘要:经导管主动脉瓣置换术(transcatheter aortic valve replacement,TAVR)已成为治疗主动脉瓣疾病的标准术式,目前适应证正逐步扩展应用于年轻及存在中低外科手术风险的患者。冠状动脉阻塞(coronary artery obstruction,CAO)是TAVR相关并发症之一,虽然发生率低,但死亡率很高。本文主要对TAVR相关CAO的危险因素识别、术前规避措施及术中处理进行综述,从而为临床降低其发生率及患者死亡率,进而改善主动脉瓣疾病患者预后提供参考。
关键词经导管主动脉瓣置换术    冠状动脉阻塞    危险因素    管理    
Research progress on risk factors and prevention of coronary artery obstruction after transcatheter aortic valve replacement
YIN Minyan1,2 , LU Yuntao3 , WEI Lai3 , WANG Xiaolin1     
1. Shanghai Institute of Medical Imaging, Shanghai 200032, China;
2. Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
3. Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Abstract: Transcatheter aortic valve replacement (TAVR) is playing an major role in the treatment of aortic valve disease, and has been extended to young or low-risk patients. Although coronary artery obstruction (CAO) is a rare complication after TAVR, it carries a high risk of fatality. This paper reviews the risk factors, protective measures and management of CAO after TAVR, so as to provide reference for clinics to reduce its incidence and mortality, and further improve the prognosis of patients with aortic valve disease.
Key words: transcatheter aortic valve replacement    coronary artery obstruction    risk factor    management    

经导管主动脉瓣置换术(transcatheter aortic valve replacement,TAVR)已成为治疗钙化性主动脉瓣狭窄(aortic stenosis,AS)的标准治疗方法[1-2]。根据2020版美国心脏病学会/美国心脏协会(American College of Cardiology/American Heart Association, ACC/AHA)指南[3],TAVR已不再局限于存在高外科手术风险的患者,而是通过综合考虑患者的瓣膜特征、基础疾病、手术风险、预期寿命及自主意愿将其与外科主动脉瓣置换术(surgical aortic valve replacement,SAVR)进行竞争性比较后选择。冠状动脉(冠脉)阻塞(coronary artery obstruction,CAO)是指左主干冠脉>50%阻塞和(或)其他分支冠脉>70%阻塞[4-5]。CAO是发生于TAVR术后较少见但致死率较高的并发症。在患者年轻化、低危化的TAVR时代到来前,认识CAO的发生机制、危险因素及相应处理策略十分必要。

1 CAO的发病情况

自然瓣患者CAO的发病率小于1%[6]。一项大型多中心研究[7]中,6 000余例接受TAVR患者CAO的发生率为0.66%。经导管瓣中瓣置换术(transcatheter valve-in-valve replacement, TAVIV)中CAO的发生率较自然瓣TAVR后高3~4倍。瓣中瓣(valve-in-valve, VIV)国际多中心注册研究[8]显示,TAVR术中CAO的发生率约为3%。但是,该发病率可能被低估,因为冠脉部分梗阻的患者未必会出现症状及需要干预,存在功能性冠脉旁路血管的患者TAVR术中即使发生了CAO也不会出现任何症状。2014年的美国胸外科医师协会/美国心脏病学会(Society of Thoracic Surgeons/American College of Cardiology, STS/ACC)经导管瓣膜治疗注册研究[9]显示,中途转为开胸手术的患者中6.2%原因为CAO。CAO会引发心肌梗死和即时血流动力学受限,预后不良。TAVR术中发生CAO的自然瓣患者术后30 d内死亡率达40.9%[7],TAVIV相关死亡率则高达52.9%[10]。约90%的TAVR相关CAO涉及左主干[11],这可能是该类患者死亡率高的主要原因。

CAO可发生在瓣膜植入后的几秒钟或几分钟内[7],也可发生于TAVR术后数小时甚至数天内[12-15],即延迟性CAO(delayed coronary obstruction, DCO)。DCO指患者在TAVR术后安全离开手术室后发生的CAO,且CAO不完全与原有冠脉疾病进展或支架内再狭窄有关[16]。一项研究[17]显示,在17 092例患者中,DCO发生率为0.22%,与自然瓣相比,DCO更易发生于VIV患者(0.89% vs 0.18%,P<0.001);与球囊扩张型瓣膜相比,DCO更易发生于自膨胀型瓣膜植入后患者(0.36% vs 0.11%,P<0.01)。

依据发病时间,DCO可分为早发型DCO(CAO发生在术后7 d内)和迟发型DCO(CAO发生在手术7 d后)。Jabbour等[17]的研究中,早发型DCO占63.2%,主要表现为心脏骤停或ST段抬高心肌梗死;迟发型DCO占36.8%,主要表现为稳定或不稳定心绞痛。早发型DCO患者比迟发型DCO有更高的院内死亡率(62.5% vs 28.6%,P=0.09)。早发型DCO的风险因素与急性CAO相似[18],包括主动脉窦狭小、冠脉开口高度低、VIV手术,植入的瓣膜(主要为自膨胀型瓣膜)持续扩张,手术引起的主动脉夹层、血肿直接压迫冠脉。建议心脏团队在围手术期加强监测,尤其关注有急性CAO危险因素的患者,并在出院前通过CT扫描评估冠脉。迟发型DCO难以预测,发生原因可能为植入的瓣膜造成持续湍流,导致主动脉窦附近的内膜增厚和纤维化,引发瓣膜支架内皮化或血栓形成[12, 19-20]。抗凝治疗可能是有效的,但TAVR后的抗凝管理有待进一步优化。在对TAVR术后患者的随访过程中,临床医生应该警惕迟发型DCO,放宽冠脉检查指征,可在病情稳定的情况下,适时安排冠脉CT造影。

2 CAO风险预测 2.1 CAO发生机制

TAVR相关CAO主要发生机制包括窦缺如和窦隔离[21]。窦缺如指展开的介入瓣将自然瓣或外科瓣的瓣叶推向冠脉开口,直接阻断冠脉血流。窦隔离指过长的自然瓣或外科瓣瓣叶在介入瓣的推动下越过窦管交界处,直接与主动脉壁相接,从而封闭冠脉窦,导致冠脉血流减少。此外,位于瓣叶尖端的钙化斑块在介入瓣的推动下堵塞在冠脉开口处,瓣膜上的血栓或栓子脱落栓塞在冠脉开口处或其主要分支,以及主动脉血肿压迫等均可导致CAO的发生[22]

2.2 TAVR相关CAO的危险因素及评估 2.2.1 危险因素

自然瓣TAVR术后患者并发CAO主要与其主动脉根部解剖特点有关[23]。主动脉根部指从左心室流出道内主动脉瓣瓣叶基底附着点至窦管交界的结构,由主动脉窦、瓣叶和瓣叶间的纤维三角组成。CT是TAVR术前评估主动脉根部解剖的重要影像学方法[24-25]。冠脉开口高度和主动脉窦宽度是评估自然瓣发生TAVR相关CAO风险的重要指标[6]。测量前首先从CT影像上找到主动脉根部的虚拟瓣环平面,即与3个主动脉瓣瓣叶的最低附着点平齐的虚拟平面。冠脉开口高度指冠脉开口至瓣环平面的垂直距离;主动脉窦直径指在平行于瓣环平面的径平面上测量的主动脉窦到瓣叶联合间的最大距离。一般三叶式主动脉的3个窦是较对称的,取3个窦直径的平均值作为主动脉窦宽度。左/右冠动脉开口高度<12 mm、主动脉窦宽度<30 mm已被确定为CAO的危险因素[7]。冠脉开口高度偏低或主动脉窦宽度偏小是通过比较预期植入的介入瓣尺寸与主动脉根部尺寸后得出的,因此没有绝对的手术禁忌参考值。此外,还须在CT图像上观察或测量窦管交界的高度及宽度、瓣叶长度、瓣叶钙化程度及钙化团块在瓣叶上的位置,以进一步评估CAO风险[26]。TAVR相关CAO更常见于女性,这可能是由于女性往往窦更小及冠脉开口更低[27]

自然瓣TAVR术后患者发生CAO的风险还与介入瓣型号及尺寸和植入深度相关。Ribeiro等[7]的研究显示,接受球囊扩张型瓣膜植入患者CAO的发生率(0.81%)为接受自膨胀型瓣膜植入患者(0.34%)的2倍。这可能是因为球囊扩张型瓣膜(如Sapien)产品手册缺乏主动脉窦宽度或冠脉开口高度建议[11],例如CoreValve自膨胀型瓣膜制造商建议26 mm和29 mm介入瓣分别适用于主动脉窦直径≥27 mm及≥29 mm的患者。此外,瓣膜的迭代也有助于减小术后CAO风险,如与Sapien XT瓣膜相比,Sapien 3的短支架设计即减小了CAO的风险;新一代瓣膜还可以重新定位,如Lotus、Portico和Evolut R[28],如在部分释放甚至完全释放后发现CAO征象,可及时回收,再定位释放或撤出,因此有助于减少CAO风险;目前还可以选择具有冠脉保护功能的瓣膜,如JenaValve、J-Valve等[29-30],其主要通过固定瓣叶防止瓣叶向冠脉开口移位,来减少CAO风险。具有冠脉保护功能的瓣膜由于经心尖入路限制了其应用,目前临床数据有限。

介入瓣的尺寸也影响CAO风险,应在不引起瓣周漏、瓣膜固定稳定及主动脉瓣压差可接受等条件下优选小尺寸[31]。小尺寸介入瓣的直径小且瓣架高度短,术后瓣叶向冠脉开口处移动的风险小。大尺寸介入瓣即使不遮蔽冠脉开口,增加的侧向位移也会减小瓣叶与冠脉开口间的血流空间,引发湍流,进一步导致冠脉纤维化、内皮化,发展为DCO[16]

在预防术后CAO方面,植入深度很重要,尤其是自膨胀型瓣膜,深度植入能有效保护冠脉血流[32]。自膨胀型瓣膜的设计特点导致支架下段承受更大的径向力,深度植入可减小自身瓣叶承受的径向力,从而减小瓣叶侧向位移。此外,为了减少瓣周漏的发生,自膨胀型瓣膜有较高的裙边设计,而裙边可引起DCO[33]。深度植入有助于避免裙边覆盖冠脉开口,同时也有利于后续冠脉通路再通。但是,植入过深会增加TAVR术后传导阻滞的发生[34]

2.2.2 预测模型

自然瓣TAVR相关CAO风险评估缺乏特异性。严格根据冠脉开口高度<12 mm及窦宽度<30 mm不仅会导致约30%的实际不存在CAO风险的患者未能接受TAVR治疗[35],而且可能遗漏由不对称分布的钙化团块等其他危险因素引起的CAO。对于初筛CAO风险较高的患者,可以通过3D打印技术重建主动脉根部,并在模型中展开瓣膜,体外模拟TAVR过程,直观评估瓣膜释放后瓣叶、支架与冠脉开口之间的关系。Russo等[36]的研究显示,3D打印瓣膜的TAVR模拟结果与临床实际CAO情况具有良好的相关性,肯定了3D打印模型模拟TAVR评估CAO的价值。患者特异性计算机模拟能通过分析介入瓣和患者解剖结构的几何、机械关系来预测介入瓣植入后发生CAO的可能性。根据术前CT数据,构建患者特定的主动脉根部有限元模型,再将已开发的介入瓣(Sapien XT、CoreValve、Lotus等)的有限元模型置于主动脉根部模型内进行有限元分析(finite element analysis, FEA),进而可模拟介入瓣展开。Heitkemper等[37]在初筛评估具有CAO风险的28例患者中进行特异性计算机模拟,构建了CAO预测模型。该团队测量了介入瓣展开后自然瓣瓣叶与冠脉开口之间的最短距离(the distance from cusp to coronary ostium,DLC),并计算其与冠脉开口直径(d)的比值(DLC/d),以此来评估冠脉开口处的阻塞程度,显示DLC/d<0.7时预测CAO发生的灵敏度为100%、特异度为95.7%。但是,计算机预测模型的应用数据有限,有待进一步验证。

2.3 VIV相关CAO风险预测 2.3.1 外科瓣相关的危险因素

VIV是TAVR相关CAO的独立危险因素之一[38]。评估VIV相关CAO发生风险时,除了主动脉根部解剖外,更须了解植入的外科瓣的具体结构(型号及尺寸)及手术细节[23]。外科瓣可分为支架瓣膜和无支架瓣膜。支架瓣膜的刚性框架主要由基底缝合环和3个支柱组成;无支架瓣膜无刚性支架,更适用于主动脉根部较小的患者。无支架瓣膜相关CAO的发生率为有支架瓣膜的4倍(6.0% vs 1.5%,P<0.001)[39]。支架瓣膜又分为支柱外置式瓣膜和支柱内置式瓣膜。无支架瓣膜和支柱内置式瓣膜相关CAO的发生风险更大[10]。这是因为相对于支柱外置式瓣膜,这两者的瓣叶不仅更长,且会随着介入瓣的外展向外延伸,导致瓣叶贴近冠脉开口[24]。典型支柱外置式外科瓣膜的3个支柱可限制瓣叶的向外移动[22]。此外,术中常需将无支架瓣膜与主动脉壁缝合[40],这进一步缩短了冠脉开口与瓣叶之间的距离。

手术细节(外科瓣的植入角度和植入位置)也影响VIV相关CAO的发生。植入角度指外科瓣与升主动脉轴之间的角度。外科瓣倾斜(或非同轴)植入时,即使主动脉窦够宽,在后续VIV植入过程中,瓣叶也可能堵塞冠脉开口[31]。外科医生在手术时通常将外科瓣缝合在瓣环平面,但为了获得更大的开口面积,也可能将外科瓣放置在环平面以上。这些置于环平面以上的外科瓣会增加CAO发生风险[11]

2.3.2 预测指标

虚拟介入瓣到冠脉开口中心的距离(virtual transcatheter heart valve-to-coronary distance,VTC)是支架瓣膜TAVIV相关CAO的独立预测指标[41],VTC<4 mm时,CAO风险明显增加[10]。在CT图像上定位瓣膜的基底环平面,在基底环的中心放置1个虚拟的圆柱体,圆柱体大小与计划植入的介入瓣的尺寸相同,注意圆柱体中心与基底环中心重合,此时冠脉开口与圆柱体边缘之间的水平距离即为VTC。VTC较小者CAO发生风险更高[8, 10]。VTC最初用于VIV-TAVR后CAO风险评估[41],后也用于自然瓣TAVR相关CAO的风险评估。但是,VTC评估自然瓣、无支架瓣膜相关CAO的价值还存在争议,可能与这两类瓣膜无刚性支撑,不能保证植入的介入瓣以柱状展开,导致CT图像上以圆柱体模拟介入瓣测出的VTC值与真实世界存在偏差有关。而且,由于VTC包含瓣叶的自身厚度,测值可能大于瓣膜与冠脉开口之间的实际距离,因此测量方法需要进一步优化。

相较于自然瓣,VIV更常见窦隔离[22],这是因为外科瓣瓣叶长度通常比自然瓣长。当瓣叶长度超过了窦管交界高度,窦管交界处的直径又较小时,可能导致主动脉窦血流被封闭。因此,需要进一步测量虚拟介入瓣至窦管交界处的距离(virtual transcatheter heart valve-to-sinotubular junction distance,VTSTJ)[31],以此评估窦隔离的可能性。最近有学者[42]建议将2~3 mm作为VTSTJ评估CAO风险的阈值,但尚待进一步论证。在CT图像上测量时,首先确定在冠脉开口和窦管交界处的短轴上能否观察到瓣膜支柱或瓣叶,可见时说明瓣叶长度不小于冠脉开口高度或窦管交界高度,此时可进一步测量VTC或VTSTJ,以评估窦缺如或窦隔离风险。目前,无支架瓣膜TAVIV相关CAO的评估方法同自然瓣TAVR[41]

3 术前CAO预防策略

SAVR是TAVR相关CAO高危患者的标准治疗方案。对于外科手术风险高或有强烈TAVR意愿的CAO高危患者,可采取一些新型技术来预防或处理TAVR相关的CAO。这些技术主要包括在冠脉预置导丝、预防性支架(烟囱支架和裸支架)植入和瓣叶电切术(BASILICA)[21]

在冠脉开口预置导丝(即介入瓣植入)前,先在有潜在阻塞风险的冠脉开口置入冠脉导丝,瓣膜释放后,若出现CAO则紧急植入支架[43-44]。但是,由于存在因冠脉急性阻塞而导致严重低血压等紧急风险,也可在介入瓣植入前即在冠脉开口释放支架。需要警惕的是,由于该方法植入的支架在瓣膜和主动脉窦或根部之间,常扩张不足,存在被血流完全压扁进而引发急性CAO或延迟性DCO的风险,同时可能加速支架衰败[45]。此外,植入支架的患者可能需要长期接受双重抗血小板治疗,而部分患者存在高出血风险,而且植入的支架可能影响冠脉通路,不利于后续介入治疗[46]

BASILICA技术是在介入瓣植入前通过导管电切割瓣叶,在冠脉开口前形成1个三角形无瓣叶覆盖空间[47-48]。Khan等[49]在30例存在CAO高风险患者中证实了该技术的可行性。30例患者中,2例因瓣叶过度钙化切割失败,余均未发生CAO。另一项多中心BASILICA研究[50]显示,214例患者术后30 d死亡率为2.8%,30 d卒中率为2.8%(其中致残性卒中率仅为0.5%),不高于常规TAVR。BASILICA术后不须长期进行双联抗血小板治疗,且手术保护冠脉通路。但BASILICA术后仍可能发生CAO,可能原因包括瓣叶偏心撕裂,介入瓣膜的覆膜支柱直接阻断冠脉开口等[51]。此外,BASILICA技术不适用于瓣叶严重钙化、冠脉偏心性开口,毁损外科瓣支柱正对冠脉开口等患者[46]

4 CAO患者的临床表现、术中抢救及预后

TAVR相关CAO多发生在左主干,患者主要表现为严重的持续性低血压、心电图上ST段抬高及室性心律失常[11]。患者常在置入介入瓣后立即出现症状[7, 10],但DCO患者在术后24 h内甚至24 h后才出现症状。因此,对于术前评估为CAO高风险的患者,术后仍需要密切监测数日,其一旦出现心电图变化和(或)严重的低血压,应立即进行主动脉根部造影或选择性冠脉造影,探查是否发生CAO[24]

经皮冠脉介入治疗(percutaneous coronaryintervention,PCI)是治疗CAO的重要手段之一。如果PCI治疗后冠脉血流未能即刻恢复,应及时改变治疗策略,紧急进行CABG。因此,建议存在CAO高风险患者的TAVR在经验丰富的中心进行。一项自然瓣TAVR后CAO国际多中心研究[7]显示,PCI联合支架植入术治疗CAO的成功率约80%,未能成功接受PCI患者的死亡率接近100%,成功接受CABG患者的死亡率也接近50%。另一项关于VIV患者TAVR后CAO国际多中心研究[10]显示,PCI的成功率为64%,13.9%的患者因左冠急性完全闭塞未能进行任何冠脉血运重建。此外,高达36%的患者(自然瓣或VIV)发生CAO后需要额外的机械血流动力学支持系统[7, 10]

综上所述,虽然TAVR相关CAO发病率低,但患者病情凶险、病死率高。随着TAVR的快速发展,循证医学证据的增加,其适应证进一步扩宽至手术风险中低、年轻的患者,这类患者发生相关CAO导致不良预后更难以接受。因此,TAVR相关CAO重在预防,术前针对CAO高危因素进行全面评估至关重要。目前有关准确预测TAVR相关CAO的指标还未达成共识,而相关指南给出的指标阈值缺乏特异性。因此TAVR术前,CAO风险评估须个体化。CAO风险预测模型有较好的应用前景,但仍须长期研究数据验证。有冠脉保护功能瓣膜的植入方式有待优化。发生CAO后,应尽快恢复冠脉血流,首选紧急PCI,尝试失败时及时改变策略。

伦理声明  无。

利益冲突  所有作者声明不存在利益冲突。

作者贡献  印敏燕:搜集文献及撰稿;陆云涛:修改稿件;魏来:思路指导;王小林:思路指导。

参考文献
[1]
CAHILL T J, CHEN M, HAYASHIDA K, et al. Transcatheter aortic valve implantation: current status and future perspectives[J]. Eur Heart J, 2018, 39(28): 2625-2634. [DOI]
[2]
BAUMGARTNER H, FALK V, BAX J J, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease[J]. Eur Heart J, 2017, 38(36): 2739-2791. [DOI]
[3]
Writing Committee Members, OTTO C M, NISHIMURA R A, et al. 2020 ACC/AHA guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines[J]. J Am Coll Cardiol, 2021, 77(4): 450-500. [DOI]
[4]
LEVINE G N, BATES E R, BLANKENSHIP J C, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines and the society for cardiovascular angiography and interventions[J]. Catheter Cardiovasc Interv, 2012, 79(3): 453-495. [DOI]
[5]
MADDOX T M, STANISLAWSKI M A, GRUNWALD G K, et al. Nonobstructive coronary artery disease and risk of myocardial infarction[J]. JAMA, 2014, 312(17): 1754-1763. [DOI]
[6]
ARAI T, LEFÈVRE T, HOVASSE T, et al. Incidence and predictors of coronary obstruction following transcatheter aortic valve implantation in the real world[J]. Catheter Cardiovasc Interv, 2017, 90(7): 1192-1197. [DOI]
[7]
RIBEIRO H B, WEBB J G, MAKKAR R R, et al. Predictive factors, management, and clinical outcomes of coronary obstruction following transcatheter aortic valve implantation: insights from a large multicenter registry[J]. J Am Coll Cardiol, 2013, 62(17): 1552-1562. [DOI]
[8]
DVIR D, WEBB J, BRECKER S, et al. Transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: results from the global valve-in-valve registry[J]. Circulation, 2012, 126(19): 2335-2344. [DOI]
[9]
HOLMES D R Jr, NISHIMURA R A, GROVER F L, et al. Annual outcomes with transcatheter valve therapy: from the STS/ACC TVT registry[J]. Ann Thorac Surg, 2016, 101(2): 789-800. [DOI]
[10]
RIBEIRO H B, RODÉS-CABAU J, BLANKE P, et al. Incidence, predictors, and clinical outcomes of coronary obstruction following transcatheter aortic valve replacement for degenerative bioprosthetic surgical valves: insights from the VIVID registry[J]. Eur Heart J, 2018, 39(8): 687-695. [DOI]
[11]
SULTAN I, SIKI M, WALLEN T, et al. Management of coronary obstruction following transcatheter aortic valve replacement[J]. J Card Surg, 2017, 32(12): 777-781. [DOI]
[12]
NEUSS M, KANEKO H, TAMBOR G, et al. Fatal thrombotic occlusion of left main trunk due to huge thrombus on prosthetic aortic valve after transcatheter aortic valve replacement[J]. JACC Cardiovasc Interv, 2016, 9(21): 2257-2258. [DOI]
[13]
FREIXA X, BONAN R, ASGAR A W. Unusual coronary occlusion post transcatheter aortic implantation: the importance of clinical assessment[J]. Can J Cardiol, 2013, 29(8): 1014.e5-1014.e6. [DOI]
[14]
GIUSTINO G, MONTORFANO M, CHIEFFO A, et al. Tardive coronary obstruction by a native leaflet after transcatheter aortic valve replacement in a patient with heavily calcified aortic valve stenosis[J]. JACC Cardiovasc Interv, 2014, 7(8): e105-e107. [DOI]
[15]
DURMAZ T, AYHAN H, KELES T, et al. Left main coronary artery obstruction by dislodged native-valve calculus after transcatheter aortic valve replacement[J]. Tex Heart Inst J, 2014, 41(4): 414-417. [DOI]
[16]
YIN W H, LEE Y T, TSAO T P, et al. Delayed coronary obstruction after transcatheter aortic valve replacement—an uncommon but serious complication[J]. Acta Cardiol Sin, 2020, 36(5): 409-415.
[17]
JABBOUR R J, TANAKA A, FINKELSTEIN A, et al. Delayed coronary obstruction after transcatheter aortic valve replacement[J]. J Am Coll Cardiol, 2018, 71(14): 1513-1524. [DOI]
[18]
JABBOUR R J, TANAKA A, COLOMBO A, et al. Delayed coronary occlusion after transcatheter aortic valve implantation: implications for new transcatheter heart valve design and patient management[J]. Interv Cardiol, 2018, 13(3): 137-139. [DOI]
[19]
SHARMA M, MASCARENHAS D. Left main coronary ostial stenosis after aortic valve replacement: a case report[J]. Clin Med Insights Case Rep, 2016, 9: 111-113.
[20]
KODALI S K, THOURANI V H, KIRTANE A J. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves[J]. N Engl J Med, 2016, 374(16): 1591.
[21]
GAROT P. TAVR-related coronary obstruction: preventive wires or stenting?[J]. JACC Cardiovasc Interv, 2020, 13(6): 748-750. [DOI]
[22]
LEDERMAN R J, BABALIAROS V C, ROGERS T, et al. Preventing coronary obstruction during transcatheter aortic valve replacement: from computed tomography to BASILICA[J]. JACC Cardiovasc Interv, 2019, 12(13): 1197-1216. [DOI]
[23]
BLANKE P, WEIR-MCCALL J R, ACHENBACH S, et al. Computed tomography imaging in the context of transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR): an expert consensus document of the society of cardiovascular computed tomography[J]. JACC Cardiovasc Imaging, 2019, 12(1): 1-24. [DOI]
[24]
BERNARDI F L M, DVIR D, RODES-CABAU J, et al. Valve-in-valve challenges: how to avoid coronary obstruction[J]. Front Cardiovasc Med, 2019, 6: 120. [DOI]
[25]
孙茹, 付文波. 非阻塞性缺血性冠状动脉疾病的研究进展[J]. 临床内科杂志, 2022, 39(7): 499-502.
SUN R, FU W B. Research progress of non-obstructive ischemic coronary artery disease[J]. J Clin Intern Med, 2022, 39(7): 499-502. [DOI]
[26]
KRISHNASWAMY A, KAPADIA S R, SURI R. Commentary: avoiding danger-addressing the specter of coronary obstruction during transcatheter aortic valve replacement[J]. J Thorac Cardiovasc Surg, 2020, 159(3): 839-841. [DOI]
[27]
NAOUM C, BLANKE P, DVIR D, et al. Clinical outcomes and imaging findings in women undergoing TAVR[J]. JACC Cardiovasc Imaging, 2016, 9(4): 483-493. [DOI]
[28]
VALVO R, COSTA G, BARBANTI M. How to avoid coronary occlusion during TAVR valve-in-valve procedures[J]. Front Cardiovasc Med, 2019, 6: 168. [DOI]
[29]
CAMBONI D, HOLZAMER A, FLÖRCHINGER B, et al. Single institution experience with transcatheter valve-in-valve implantation emphasizing strategies for coronary protection[J]. Ann Thorac Surg, 2015, 99(5): 1532-1538. [DOI]
[30]
YE J, LEE A J, BLANKE P, et al. The first transapical transcatheter aortic valve-in-valve implantation using the J-valve system into a failed biophysio aortic prosthesis in a patient with high risk of coronary obstruction[J]. Catheter Cardiovasc Interv, 2018, 92(6): 1209-1214. [DOI]
[31]
DVIR D, LEIPSIC J, BLANKE P, et al. Coronary obstruction in transcatheter aortic valve-in-valve implantation: preprocedural evaluation, device selection, protection, and treatment[J]. Circ Cardiovasc Interv, 2015, 8(1): e002079. [DOI]
[32]
HATOUM H, LILLY S M, CRESTANELLO J, et al. A case study on implantation strategies to mitigate coronary obstruction in a patient receiving transcatheter aortic valve replacement[J]. J Biomech, 2019, 89: 115-118. [DOI]
[33]
ABDELAZIZ H K, WIPER A, AL-BADAWI T, et al. Balloon assisted retraction of a migrated CoreValve Evolut R bioprosthesis during cardiac arrest[J]. Cardiovasc Revasc Med, 2016, 17(8): 582-583. [DOI]
[34]
ULLAH W, ZAHID S, ZAIDI S R, et al. Predictors of permanent pacemaker implantation in patients undergoing transcatheter aortic valve replacement—a systematic review and meta-analysis[J]. J Am Heart Assoc, 2021, 10(14): e020906. [DOI]
[35]
HEITKEMPER M, SIVAKUMAR S, HATOUM H, et al. Simple 2-dimensional anatomic model to predict the risk of coronary obstruction during transcatheter aortic valve replacement[J]. J Thorac Cardiovasc Surg, 2021, 162(4): 1075-1083.e1. [DOI]
[36]
RUSSO J J, YUEN T, TAN J, et al. Assessment of coronary artery obstruction risk during transcatheter aortic valve replacement utilising 3D-printing[J]. Heart Lung Circ, 2022, 31(8): 1134-1143. [DOI]
[37]
HEITKEMPER M, HATOUM H, AZIMIAN A, et al. Modeling risk of coronary obstruction during transcatheter aortic valve replacement[J]. J Thorac Cardiovasc Surg, 2020, 159(3): 829-838.e3. [DOI]
[38]
GAO Z C, WANG Y, QIAN D H, et al. Incidence, risk factors, and outcomes of coronary obstruction following valve-in-valve transcatheter aortic valve replacement[J]. Int Heart J, 2021, 62(1): 104-111. [DOI]
[39]
DUNCAN A, MOAT N, SIMONATO M, et al. Outcomes following transcatheter aortic valve replacement for degenerative stentless versus stented bioprostheses[J]. JACC Cardiovasc Interv, 2019, 12(13): 1256-1263. [DOI]
[40]
MILLER M, SNYDER M, HORNE B D, et al. Transcatheter aortic valve-in-valve replacement for degenerated stentless bioprosthetic aortic valves: results of a multicenter retrospective analysis[J]. JACC Cardiovasc Interv, 2019, 12(13): 1217-1226. [DOI]
[41]
BLANKE P, SOON J, DVIR D, et al. Computed tomography assessment for transcatheter aortic valve in valve implantation: the Vancouver approach to predict anatomical risk for coronary obstruction and other considerations[J]. J Cardiovasc Comput Tomogr, 2016, 10(6): 491-499. [DOI]
[42]
KITAMURA M, MAJUNKE N, HOLZHEY D, et al. Systematic use of intentional leaflet laceration to prevent TAVI-induced coronary obstruction: feasibility and early clinical outcomes of the BASILICA technique[J]. EuroIntervention, 2020, 16(8): 682-690. [DOI]
[43]
YAMAMOTO M, SHIMURA T, KANO S, et al. Impact of preparatory coronary protection in patients at high anatomical risk of acute coronary obstruction during transcatheter aortic valve implantation[J]. Int J Cardiol, 2016, 217: 58-63. [DOI]
[44]
MERCANTI F, ROSSEEL L, NEYLON A, et al. Chimney stenting for coronary occlusion during TAVR: insights from the chimney registry[J]. JACC Cardiovasc Interv, 2020, 13(6): 751-761. [DOI]
[45]
PIGHI M, LUNARDI M, PESARINI G, et al. Intravascular ultrasound assessment of coronary ostia following valve-in-valve transcatheter aortic valve implantation[J]. EuroIntervention, 2021, 16(14): 1148-1151. [DOI]
[46]
BRUCE C G, GREENBAUM A B, BABALIAROS V C, et al. Safeguards and pitfalls for bioprosthetic or native aortic scallop intentional laceration to prevent iatrogenic coronary artery obstruction during transcatheter aortic valve replacement—the BASILICA technique[J]. Ann Cardiothorac Surg, 2021, 10(5): 700-707. [DOI]
[47]
KHAN J M, GREENBAUM A B, BABALIAROS V C, et al. BASILICA trial: one-year outcomes of transcatheter electrosurgical leaflet laceration to prevent TAVR coronary obstruction[J]. Circ Cardiovasc Interv, 2021, 14(5): e010238.
[48]
KHAN J M, DVIR D, GREENBAUM A B, et al. Transcatheter laceration of aortic leaflets to prevent coronary obstruction during transcatheter aortic valve replacement: concept to first-in-human[J]. JACC Cardiovasc Interv, 2018, 11(7): 677-689.
[49]
KHAN J M, GREENBAUM A B, BABALIAROS V C, et al. The BASILICA trial: prospective multicenter investigation of intentional leaflet laceration to prevent TAVR coronary obstruction[J]. JACC Cardiovasc Interv, 2019, 12(13): 1240-1252.
[50]
KHAN J M, BABALIAROS V C, GREENBAUM A B, et al. Preventing coronary obstruction during transcatheter aortic valve replacement: results from the multicenter international BASILICA registry[J]. JACC Cardiovasc Interv, 2021, 14(9): 941-948.
[51]
ROGERS T, GREENSPUN B C, WEISSMAN G, et al. Feasibility of coronary access and aortic valve reintervention in low-risk TAVR patients[J]. JACC Cardiovasc Interv, 2020, 13(6): 726-735.

文章信息

引用本文
印敏燕, 陆云涛, 魏来, 王小林. 经导管主动脉瓣置换术后冠状动脉阻塞的风险因素及预防研究进展[J]. 中国临床医学, 2024, 31(1): 154-160.
YIN Minyan, LU Yuntao, WEI Lai, WANG Xiaolin. Research progress on risk factors and prevention of coronary artery obstruction after transcatheter aortic valve replacement[J]. Chinese Journal of Clinical Medicine, 2024, 31(1): 154-160.
通信作者(Corresponding authors).
王小林, Tel: 021-64041990,E-mail:fduwangxiaolin@163.com.

工作空间