文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (6): 965-970      DOI: 10.12025/j.issn.1008-6358.2023.20231029
0
GO-CoA-Tat改善脂肪肝小鼠脂质代谢和氧化应激
王海燕 , 李裕霖 , 胡静娴 , 周皓 , 蒋淼 , 张绍仁     
复旦大学附属金山医院消化内科, 上海 201508
摘要目的: 探讨饥饿素O-酰基转移酶(ghrelin O-acyltransferase,GOAT)抑制剂GO-CoA-Tat对高脂饮食(high-fat diet,HFD)诱导的非酒精性脂肪性肝病(non-alcoholic fatty liver disease,NAFLD)小鼠脂质代谢和氧化应激的影响。方法: 选择C57BL/6雄性小鼠24只,分为对照组、HFD组和GO-CoA-Tat组,每组8只。对照组给予标准饮食,HFD组和GO-CoA-Tat组均给予HFD,GO-CoA-Tat组喂养第3周起每天腹腔注射GO-CoA-Tat。每周测量小鼠食物摄入量和小鼠体质量。喂养8周后采集血清及肝脏样本,测量肝脏质量,并采用油红O染色检测肝脏脂滴形成情况;检测并比较3组小鼠血清三酰甘油(triglyceride,TG)、总胆固醇(total cholesterol,TC)、丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase,AST)和肝脏谷胱甘肽(glutathione,GSH)、超氧化物歧化酶(superoxide dismutase,SOD)、丙二醛(malondialdehyde,MDA)。结果: HFD组小鼠喂养8周后出现明显的肝脏脂肪变性;与HFD组相比,GO-CoA-Tat组脂肪变性明显缓解。与HFD组相比,GO-CoA-Tat组小鼠食物摄入量减少、体质量减小、肝脏质量减小(P < 0.05)。与HFD组相比,GO-CoA-Tat组小鼠肝脏TG含量降低,血清TG和TC降低(P < 0.05);肝脏GSH、SOD浓度升高(P < 0.01),MDA浓度下降(P=0.005);血清ALT和AST降低(P < 0.05)。结论: GO-CoA-Tat可改善NAFLD小鼠肝脏的脂质代谢和氧化应激,从而发挥肝脏保护作用。
关键词高脂饮食    非酒精性脂肪性肝病    GO-CoA-Tat    饥饿素O-酰基转移酶    氧化应激    
GO-CoA-Tat improves lipid metabolism and oxidative stress in mice with fatty liver disease
WANG Hai-yan , LI Yu-lin , HU Jing-xian , ZHOU Hao , JIANG Miao , ZHANG Shao-ren     
Department of Gastroenterology, Jinshan Hospital, Fudan University, Shanghai 201508, China
Abstract: Objective: To investigate the effects of GO-CoA-Tat, an inhibitor of ghrelin O-acyltransferase (GOAT), on lipid metabolism and oxidative stress in mice with non-alcoholic fatty liver disease (NAFLD) induced by high-fat diet (HFD). Methods: Twenty-four C57BL/6 male mice were selected and divided into control group, HFD group and GO-CoA-Tat group, with 8 mice in each group. The mice in control group was given standard diet, the mice in HFD group and GO-CoA-Tat group were given HFD, and the mice in GO-CoA-Tat group was given daily intraperitoneal injection of GO-CoA-Tat from 3rd week of feeding. Food intake and body mass of mice were measured weekly. After 8 weeks, serum and liver samples were collected, liver weight was measured, and fat droplets were detected by hepatocyte oil red O staining; biochemical indexes such as serum triglyceride (TG), total cholesterol (TC), alanine aminotransferase (ALT), aspartate aminotransferase (AST) and oxidative stress indexes of liver such as glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) were measured. Results: Hepatic steatosis was observed after feeding with HFD for 8 weeks, which was significantly relieved in GO-CoA-Tat group compared with HFD group. Compared with HFD group, the food intake, body weight and liver weight of mice in GO-CoA-Tat group decreased (P < 0.05). Compared with HFD group, the content of TG in liver of mice in GO-CoA-Tat group decreased, the concentrations of serum TG and TC decreased (P < 0.05), and the concentrations of liver GSH and SOD increased (P < 0.01), liver MDA decreased (P=0.005), and the serum ALT and AST decreased (P < 0.05). Conclusion: GO-CoA-Tat can improve lipid metabolism and oxidative stress in the liver of NAFLD mice, thus play a protective role in the liver.
Key words: high-fat diet    non-alcoholic fatty liver disease    GO-CoA-Tat    ghrelin O-acyltransferase    oxidative stress    

非酒精性脂肪性肝病(non-alcoholic fatty liver disease, NAFLD)的典型病理特征是肝脏脂肪变性[1]。NAFLD目前已成为肝病的常见病因,且发病率逐年上升[2]。NAFLD包含单纯性脂肪变性、脂肪性肝炎和肝纤维化等组织病理学类型[3-4]。肥胖常与胰岛素抵抗或代谢综合征密切相关,是NAFLD的重要致病因素之一[5]。过度的脂肪堆积会导致代谢紊乱、内质网应激以及线粒体超氧化物歧化酶(superoxide dismutase, SOD)生成过量[6-7]。氧化应激在NAFLD发病过程中发挥重要作用,可导致肝细胞功能障碍和过度炎症,最终引发肝细胞凋亡以及肝纤维化[8-9]

GO-CoA-Tat是饥饿素O-酰基转移酶(ghrelin O-acyltransferase, GOAT)特异性抑制剂[10-12]。GOAT作为一种参与脂质代谢和信号转导的跨膜蛋白,在维持血糖稳定、调节胆汁酸生成及调节脂质代谢等过程中发挥作用[13-14]。此外,GOAT还参与调控炎症反应[15-17]。抑制GOAT可以减小野生型小鼠的体质量、降低血糖或减少食物摄入量,提示干预调节GOAT可能是一种有效治疗糖尿病和肥胖的策略[10-11]。Zhang等[18]研究发现,GO-CoA-Tat减小了脂肪肝小鼠的体质量,降低了血清丙氨酸氨基转移酶(alanine aminotransferase, ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase, AST)及葡萄糖(glucose, Glu)水平,可能通过AMPK-mTOR通路调节自噬来减轻肝脏脂肪毒性。GO-CoA-Tat可能是一种治疗NAFLD的有效化合物,因此本研究探讨其对NAFLD脂质代谢的影响及其潜在作用机制。

1 材料与方法 1.1 实验动物及饲养

选择8~10周龄、21~24 g的C57BL/6雄性小鼠(购自上海灵畅生物科技有限公司)24只,采用高脂饮食(high-fat diet, HFD)法诱导脂肪肝。高脂饲料(D12492)购自上海睿安生物科技有限公司。实验小鼠在(22±2)℃、湿度48%~52%及12 h光照和黑暗交替条件下喂养。本研究方案经复旦大学附属金山医院动物实验伦理委员会审批(金医伦理-2016-13),符合实验室动物管理与使用准则。

1.2 动物模型和实验分组

实验小鼠随机分为3组,每组8只。对照组小鼠每天给予普通饮食,从第3周开始每天腹腔注射生理盐水;HFD组小鼠每天喂食高脂饲料,从第3周开始腹腔注射生理盐水;GO-CoA-Tat组小鼠每天喂食高脂饲料,从第3周开始每天腹腔注射GO-CoA-Tat(96 μg/kg;北京康泰生物技术有限公司)。所有小鼠在第8周处死,采集血清和肝脏样本用以进行血清学和组织学分析。

1.3 代谢及氧化应激指标检测

(1)观察小鼠食物摄入量动态变化,测量小鼠体质量动态变化。观察期间每日定时加料,加料前准确称量饲料,24 h后称量剩余饲料量,加料前饲料量与剩余饲料量之差即为每日食物摄入量。喂养第8周处死小鼠后,称量肝脏质量。(2)采用微孔板检测试剂盒(南京建成生物工程研究所有限公司)测定血清三酰甘油(triglyceride, TG)、总胆固醇(total cholesterol, TC)、ALT和AST水平。采用细胞脂质测定试剂盒(南京建成生物工程研究所有限公司)测定小鼠肝脏TG含量。(3)收集实验小鼠肝脏样品的上清液,根据试剂盒说明书(南京建成生物工程研究所有限公司)测量谷胱甘肽(glutathione, GSH)、SOD以及丙二醛(malondialdehyde, MDA)的水平。

1.4 肝脏组织病理学评估

用4%多聚甲醛灌注小鼠肝脏标本至少24 h,以5 μm制备冰冻切片,4%多聚甲醛固定20 min。在环境温度下,油红O(Sigma-Aldrich公司,美国)染色15 min,PBS洗涤2次。采用显微镜照相机系统(奥林巴斯公司,日本)观察肝细胞内脂滴的变化。光镜下观察肝组织学变化,参照《非酒精性脂肪性肝病防治指南(2018更新版)》[19]评估。

1.5 统计学处理

采用SPSS 22.0软件进行统计分析。正态分布的计量资料以x±s表示,多组间比较采用单因素方差分析,两两比较采用LSD-t检验。检验水准(α)为0.05。

2 结果 2.1 GO-CoA-Tat降低NAFLD小鼠食物摄入量、小鼠体质量和肝脏重量

结果(图 1A)显示:喂养2~8周,HFD组小鼠食物摄入量大于对照组(P<0.05);喂养4~8周GO-CoA-Tat组小鼠食物摄入量小于HFD组(P<0.05)。结果(图 1B)显示:喂养2~8周,HFD组小鼠体质量大于对照组(P<0.05);喂养5~8周,GO-CoA-Tat组小鼠体质量小于HFD组(P<0.05)。结果(图 1C)显示:喂养8周后,3组小鼠肝脏质量差异有统计学意义(F=123.6, P=0.015);两两比较显示,HFD组大于对照组(P=0.001),GO-CoA-Tat组小于HFD组(P=0.005)。

图 1 GO-CoA-Tat降低NAFLD小鼠食物摄入量、体质量及肝脏重量 A:3组小鼠食物摄入量动态变化;B:3组小鼠体质量动态变化;C:喂养8周后,3组小鼠肝脏质量比较。GO-CoA-Tat组从喂养第3周开始腹腔注射GO-CoA-Tat。*P<0.05与对照组相比;P<0.05与HFD组相比。
2.2 GO-CoA-Tat降低NAFLD小鼠肝脏脂肪变性,降低血脂水平

肝组织油红O染色结果(图 2A)显示:与对照组相比,HFD组小鼠肝组织表现出明显脂肪变性,GO-CoA-Tat组小鼠脂肪变性较HFD组缓解。3组小鼠肝组织油红O染色区域占比差异有统计学意义(F=112.5,P=0.013);两两比较显示,HFD组大于对照组(P=0.001),GO-CoA-Tat组小于HFD组(P=0.003)。

图 2 GO-CoA-Tat减轻NAFLD小鼠肝脏脂肪变性,并降低血脂水平 A:喂养第8周,3组小鼠肝组织油红O染色结果;B:喂养第8周,3组小鼠肝脏TG及血脂水平比较。GO-CoA-Tat组从第3周开始腹腔注射GO-CoA-Tat。TG:三酰甘油;TC:总胆固醇。*P<0.05与对照组相比;P<0.05与HFD组相比。

结果(图 2B)显示:3组小鼠肝脏TG含量差异有统计学意义(F=84.25,P=0.009);两两比较显示,HFD组大于对照组(P=0.001),GO-CoA-Tat组小于HFD组(P=0.009)。3组小鼠血清TG和TC差异有统计学意义(TG:F=48.26, P=0.021;TC:F=85.3, P=0.032);两两比较显示,HFD组小鼠的血清TG(P=0.006)和TC(P=0.001)水平高于对照组,GO-CoA-Tat组小鼠血清TG(P=0.010)和TC(P=0.007)水平低于HFD组。

2.3 GO-CoA-Tat减轻NAFLD小鼠肝脏氧化应激

结果(图 3)显示:3组小鼠GSH、SOD、MDA差异有统计学意义(GSH:F=49.64,P=0.016;SOD:F=68.35,P=0.024;MDA:F=89.37,P=0.013);两两比较显示,与对照组相比,HFD组GSH(P=0.001)和SOD浓度(P=0.002)降低、MDA浓度升高(P=0.003);与HFD组相比,GO-CoA-Tat组GSH浓度(P=0.009)和SOD浓度(P=0.008)升高、MDA浓度降低(P=0.005)。

图 3 GO-CoA-Tat减轻NAFLD小鼠肝脏氧化应激水平 GO-CoA-Tat组从第3周开始腹腔注射GO-CoA-Tat。GSH:谷胱甘肽;SOD:超氧化物歧化酶;MDA:丙二醛。*P<0.05与对照组相比;P<0.05与HFD组相比。
2.4 GO-CoA-Tat缓解NAFLD小鼠肝脏功能损伤

结果(图 4)显示:3组小鼠ALT、AST差异有统计学意义(ALT:F=112.3,P=0.017;AST:F=64.31,P=0.022);两两比较显示,HFD组小鼠ALT(P=0.003)和AST(P=0.004)水平高于对照组,GO-CoA-Tat组小鼠ALT(P=0.010)和AST(P=0.020)水平低于HFD组。

图 4 GO-CoA-Tat缓解NAFLD小鼠肝脏功能损伤 GO-CoA-Tat组从第3周开始腹腔注射GO-CoA-Tat。ALT:丙氨酸氨基转移酶;AST:天冬氨酸氨基转移酶。*P<0.05与对照组相比;P<0.05与HFD组相比。
3 讨论

随着生活方式的改变,NAFLD的发病率逐年升高。在西方国家,肥胖人群患NAFLD的风险非常高[18, 20]。NAFLD呈渐进式发展,从单纯的肝脏脂肪变性开始,逐渐发展为肝脏炎症、肝纤维化,最终导致肝癌。NAFLD与肥胖、糖代谢异常和脂质代谢异常等危险因素密切相关。目前,除饮食控制和适当运动外,NAFLD尚缺乏有效的治疗手段[21-22]

食物摄入增加和肥胖是NAFLD的主要起始病因,血脂异常在NAFLD发病中起至关重要的作用。既往研究[13, 23]显示,GOAT可能参与能量代谢、肝脏脂质代谢、炎症反应以及葡萄糖代谢等过程;而GO-CoA-Tat可抑制小鼠GOAT表达,同时诱导小鼠体质量减轻、血糖水平下降[10-11]。本研究结果显示,GO-CoA-Tat使高脂饲料喂养小鼠的食物摄入量减少,减轻小鼠肝脏质量和体质量,而且可改善HFD诱导的肝脏组织脂肪变性,降低肝脏TG和血脂水平。

目前,NAFLD的确切发病机制尚不清楚,但“两次打击学说”被普遍接受:“第一次打击”为胰岛素抵抗导致的肝脏脂肪变性,“第二次打击”为氧化应激[24]。氧化应激导致肝脏炎症损伤进一步加重,并促使NAFLD向更严重的肝脏病变如肝纤维化等发展[11]。抗氧化酶和氧化活性物质是评估NAFLD氧化应激的重要指标[25]。本研究结果显示,小鼠在高脂饲料喂养8周后出现了明显的肝脏氧化应激,表现为肝脏脂质过氧化产物MDA水平升高,而SOD和GSH水平均降低;GO-CoA-Tat干预后,小鼠MDA水平降低,同时SOD和GSH水平升高。炎症性肝损伤是非酒精性肝脂肪变性向非酒精性脂肪性肝炎进展的关键因素[24-25]。本研究中,GO-CoA-Tat干预后,小鼠肝脏ALT和AST水平较HFD组降低,表明GO-CoA-Tat可以缓解肝脏的炎症损伤。

本研究存在一定的局限性:(1)动物造模时间较短,仅在3周内完成脂肪肝造模;(2)肝脏组织病理学的评价指标较单一,仅评价了各组脂肪变性情况,未进行炎症和纤维化的组织学评估。课题组未来将延长造模时间,并针对肝脏炎症及纤维化进行组织学评估。

综上所述,GO-CoA-Tat可减轻NAFLD小鼠体质量,改善肝脏脂质代谢及血脂水平,缓解肝脏脂肪变性及损伤,该作用可能与其改善肝脏氧化应激反应有关。本研究表明GO-CoA-Tat有望成为NAFLD的潜在治疗药物,其作用机制和临床应用值得进一步探讨。

利益冲突:  所有作者声明不存在利益冲突。

参考文献
[1]
CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of non-alcoholic fatty liver disease:practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association[J]. Hepatology, 2012, 55(6): 2005-2023. [DOI]
[2]
FRIEDMAN S L, NEUSCHWANDER-TETRI B A, RINELLA M, et al. Mechanisms of NAFLD development and therapeutic strategies[J]. Nat Med, 2018, 24(7): 908-922. [DOI]
[3]
MUSSO G, CASSADER M, GAMBINO R. Non-alcoholic steatohepatitis:emerging molecular targets and therapeutic strategies[J]. Nat Rev Drug Discov, 2016, 15(4): 249-274. [DOI]
[4]
POUWELS S, SAKRAN N, GRAHAM Y, et al. Non-alcoholic fatty liver disease (NAFLD):a review of pathophysiology, clinical management and effects of weight loss[J]. BMC Endocr Disord, 2022, 22(1): 63. [DOI]
[5]
YOUNOSSI Z M, GOLABI P, DE AVILA L, et al. The global epidemiology of NAFLD and NASH in patients with type 2 diabetes:a systematic review and meta-analysis[J]. J Hepatol, 2019, 71(4): 793-801. [DOI]
[6]
BUZZETTI E, PINZANI M, TSOCHATZIS E A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD)[J]. Metabolism, 2016, 65(8): 1038-1048. [DOI]
[7]
CHEN Z, TIAN R F, SHE Z G, et al. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease[J]. Free Radic Biol Med, 2020, 152: 116-141. [DOI]
[8]
ROLO A P, TEODORO J S, PALMEIRA C M. Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis[J]. Free Radic Biol Med, 2012, 52(1): 59-69. [DOI]
[9]
LI S, TAN H Y, WANG N, et al. The role of oxidative stress and antioxidants in liver diseases[J]. Int J Mol Sci, 2015, 16(11): 26087-26124. [DOI]
[10]
BARNETT B P, HWANG Y, TAYLOR M S, et al. Glucose and weight control in mice with a designed ghrelin O-acyltransferase inhibitor[J]. Science, 2010, 330(6011): 1689-1692. [DOI]
[11]
TEUFFEL P, WANG L, PRINZ P, et al. Treatment with the ghrelin-O-acyltransferase (GOAT) inhibitor GO-CoA-Tat reduces food intake by reducing meal frequency in rats[J]. J Physiol Pharmacol, 2015, 66(4): 493-503.
[12]
DU G M, LUO B P, HU Z H, et al. The effect of ghrelin O-acyltransferase inhibitor on gastric H+-K+-ATPase activity and GOAT/ghrelin system in gastric mucosal cells in vitro[J]. Gen Comp Endocrinol, 2018, 267: 167-171. [DOI]
[13]
YANG J, BROWN M S, LIANG G S, et al. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone[J]. Cell, 2008, 132(3): 387-396. [DOI]
[14]
MICIONI DI BONAVENTURA E, BOTTICELLI L, DEL BELLO F, et al. Assessing the role of ghrelin and the enzyme ghrelin O-acyltransferase (GOAT) system in food reward, food motivation, and binge eating behavior[J]. Pharmacol Res, 2021, 172: 105847.
[15]
KANG K, SCHMAHL J, LEE J M, et al. Mouse ghrelin-O-acyltransferase (GOAT) plays a critical role in bile acid reabsorption[J]. FASEB J, 2012, 26(1): 259-271. [DOI]
[16]
CAI H, CONG W N, DAIMON C M, et al. Altered lipid and salt taste responsivity in ghrelin and GOAT null mice[J]. PLoS One, 2013, 8(10): e76553.
[17]
WANG Q, TANG W, RAO W S, et al. Changes of Ghrelin/GOAT axis and mTOR pathway in the hypothalamus after sleeve gastrectomy in obese type-2 diabetes rats[J]. World J Gastroenterol, 2017, 23(34): 6231-6241.
[18]
ZHANG S R, MAO Y Q, FAN X M. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway[J]. Drug Des Dev Ther, 2018, 12: 873-885.
[19]
中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018更新版)[J]. 中华肝脏病杂志, 2018, 26(3): 195-203.
Fatty Liver and Alcoholic Liver Disease Group of Hepatology Branch of Chinese Medical Association, Fatty Liver Expert Committee of Chinese Medical Association. Guidelines of prevention and treatment for nonalcoholic fatty liver disease:a 2018 update[J]. Chin J Hepatol, 2018, 26(3): 195-203.
[20]
POLYZOS S A, KOUNTOURAS J, MANTZOROS C S. Obesity and nonalcoholic fatty liver disease:from pathophysiology to therapeutics[J]. Metabolism, 2019, 92: 82-97.
[21]
NOUREDDIN M, YATES K P, VAUGHN I A, et al. Clinical and histological determinants of nonalcoholic steatohepatitis and advanced fibrosis in elderly patients[J]. Hepatology, 2013, 58(5): 1644-1654.
[22]
DUELL P B, WELTY F K, MILLER M, et al. Nonalcoholic fatty liver disease and cardiovascular risk:a scientific statement from the American Heart Association[J]. Arterioscler Thromb Vasc Biol, 2022, 42(6): e168-e185.
[23]
GUALILLO O, LAGO F, DIEGUEZ C. Introducing GOAT:a target for obesity and anti-diabetic drugs?[J]. Trends Pharmacol Sci, 2008, 29(8): 398-401. [URI]
[24]
MALAGUARNERA M, DI ROSA M, NICOLETTI F, et al. Molecular mechanisms involved in NAFLD progression[J]. J Mol Med (Berl), 2009, 87(7): 679-695.
[25]
ZHU R Z, WANG Y J, ZHANG L Q, et al. Oxidative stress and liver disease[J]. Hepatol Res, 2012, 42(8): 741-749.

文章信息

引用本文
王海燕, 李裕霖, 胡静娴, 周皓, 蒋淼, 张绍仁. GO-CoA-Tat改善脂肪肝小鼠脂质代谢和氧化应激[J]. 中国临床医学, 2023, 30(6): 965-970.
WANG Hai-yan, LI Yu-lin, HU Jing-xian, ZHOU Hao, JIANG Miao, ZHANG Shao-ren. GO-CoA-Tat improves lipid metabolism and oxidative stress in mice with fatty liver disease[J]. Chinese Journal of Clinical Medicine, 2023, 30(6): 965-970.
通信作者(Corresponding authors).
张绍仁, Tel: 021-57039569, E-mail: zhangsr1982@163.com.
基金项目
复旦大学附属金山医院项目(HBXK-2021-2)
Foundation item
Supported by Project of Jinshan Hospital, Fudan University (HBXK-2021-2)

工作空间