文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (4): 658-663      DOI: 10.12025/j.issn.1008-6358.2023.20221897
0
1型糖尿病患者血清miRNA-24、mTOR与Treg细胞亚群比例的相关性
沈婷 , 居悦俊 , 王冠怡 , 孔颖宏     
南通大学附属常熟医院内分泌科, 常熟 215500
摘要目的: 探讨1型糖尿病(T1DM)患者血清miRNA-24、哺乳动物雷帕霉素靶蛋白(mTOR)与外周血单个核细胞(PBMC)中调节性T细胞(Treg)及其亚群比例的相关性。方法: 选择2020年1月至2022年1月在南通大学附属常熟医院内分泌科就诊的40例T1DM患者及同期体检健康者40例(对照组)。用密度梯度离心法分离研究对象的PBMC,以CD25和CD127标记CD4+ Treg(CD4+CD25hiCD127low,总Treg);分别以CD45RA、CD45RO标记效应型Treg细胞亚群(CD45RA+Treg,eTreg)、静息型Treg细胞亚群(CD45RO+Treg,rTreg)。采用qPCR法检测血清miRNA-24的表达,ELISA检测血清mTOR的水平,比较两组上述指标水平。采用Pearson法分析miRNA-24及mTOR与T1DM患者的eTreg、rTreg及eTreg/rTreg比值之间的相关性。结果: 两组PBMC中总Treg比例差异无统计学意义。T1DM组eTreg亚群占比低于对照组、rTreg亚群占比高于对照组(P<0.05);T1DM组eTreg/rTreg比值小于对照组(P<0.05)。T1DM组患者血清中miRNA-24水平低于对照组(P<0.001),mTOR水平高于对照组(P<0.05)。T1DM患者单糖尿病抗体亚组(n=23)与多糖尿病抗体亚组(n=17)总Treg细胞比例、Treg亚群比例、eTreg/rTreg比值、miRNA-24及mTOR水平差异均无统计学意义;血糖控制良好(糖化血红蛋白<7.5%)亚组(n=11)与血糖控制不佳(糖化血红蛋白≥7.5%)亚组(n=29)上述指标差异均有统计学意义(均P<0.05)。miRNA-24与eTreg(r=0. 40,P=0. 01)、eTreg/rTreg比值(r=0.66,P<0.001)正相关,与rTreg为负相关(r=-0. 69,P<0.001);mTOR与eTreg(r=-0. 32,P=0. 04)、eTreg/rTreg比值(r=-0.40,P=0.01)负相关,与rTreg正相关(r=0. 48,P=0.001)。结论: T1DM患者PBMC中CD4+Treg亚群改变,不同血糖控制T1DM患者miRNA-24、mTOR水平不同,miRNA-24、mTOR与Treg亚群比例及eTreg/rTreg比值存在一定相关性,提示miRNA-24、mTOR可能参与T1DM患者Treg调节。
关键词1型糖尿病    调节性T细胞    miRNA-24    哺乳动物雷帕霉素靶蛋白    
Correlation between serum miRNA-24, mTOR and ratio of Treg cell subsets in patients with type 1 diabetes mellitus
SHEN Ting , JU Yue-jun , WANG Guan-yi , KONG Ying-hong     
Department of Endocrinology, Affiliated Changshu Hospital of Nantong University, Changshu 215500, Jiangsu, China
Abstract: Objective: To explore the correlation between serum miRNA-24, mechanism target of rapamycin (mTOR) and the frequency of regulatory T cells (Treg) and their subsets in peripheral blood mononuclear cells (PBMC) in patients with type 1 diabetes (T1DM). Methods: A total of 40 T1DM patients who were treated in the Endocrinology Department of Affiliated Changshu Hospital of Nantong University from January 2020 to January 2022 were selected as T1DM group, and 40 healthy people who underwent physical examination in the hospital during the same period were selected as the control group. CD4+Treg (CD4+CD25hiCD127low) were marked with CD25 and CD127, and Treg cell subsets included effector Treg (eTreg, CD45RA+Treg) and resting Treg (rTreg, CD45RO+Treg) were differentiated by CD45RA and CD45RO. Serum miRNA-24 was detected by qPCR and serum mTOR was detected by enzyme-linked immunosorbent assay. The levels of above indexes were compared between the two groups. Pearson test was used to analyze the correlations between miRNA-24 and mTOR levels and eTreg, rTreg and eTreg/rTreg ratio in T1DM patients. Results: There was no statistically significant difference in the total Treg ratio in the PBMC between T1DM group and control group. Compared with the control group, the proportion of eTreg subset in the T1DM group was lower, the proportion of rTreg subset was higher (P < 0.05), and the eTreg/rTreg ratio in the T1DM group was lower (P < 0.05). Compared with the control group, the serum miRNA-24 level in the T1DM group was lower (P < 0.001), and the mTOR level was higher (P < 0.05). There was no significant difference in the proportion of total Treg cells, the proportion of Treg subsets, eTreg/rTreg ratio, the levels of miRNA-24 and mTOR between the single-antibody subgroup (n=23) and multi-antibody subgroup (n=17) among T1DM patients. There were statistically difference in the above indicators between the blood glucose controlled well (glycosylated hemoglobin < 7.5%, n=11) and bad (glycosylated hemoglobin≥7.5%, n=29) subgroups among T1DM patients (P < 0.05). MiRNA-24 was positively correlated with eTreg (r=0.40, P=0.01) and eTreg/rTreg ratio (r=0.66, P < 0.001), while was negatively correlated with rTreg (r=-0.69, P < 0.001); mTOR was negatively correlated with eTreg (r=-0.32, P=0.04) and eTreg/rTreg ratio (r=-0.40, P=0.01), while was positively correlated with rTreg (r=0.48, P=0.001). Conclusion: CD4+Treg subsets in PBMC in patients with T1DM change; miRNA-24 and mTOR might be different. MiRNA-24 and mTOR might be correlated with the frequency of Treg cell subsets and eTreg/rTreg ratio, and involve in the regulation of Treg in T1DM patients.
Key words: T1DM    Treg    miRNA-24    mechanism target of rapamycin    

1型糖尿病(type 1 diabetes mellitus, T1DM)是一种慢性进行性自身免疫性疾病,多发生于儿童及青少年,发病率逐年升高[1]。近年来T1DM免疫治疗越来越受到关注,作用于B细胞的CD20单抗、作用于T细胞的CD3单抗以及谷氨酸脱羧酶(GAD)疫苗等逐渐应用于T1DM患者[2-4],但这些药物或疫苗延缓患者胰岛功能下降的效果不佳。

调节性T细胞(Treg)与T1DM发生发展相关[5]。多项研究[6-8]通过小剂量白介素-2(IL-2)刺激Treg细胞或直接输注功能正常的Treg细胞来治疗T1DM,但结果并不理想。Treg细胞可分为静息状态的Treg细胞(rTreg)以及活化状态的效应Treg细胞(eTreg),由于其激活程度、功能性和组成缺乏同质性[9],需要细化其在T1DM发生发展中起关键作用的亚群,以实现更精准的免疫治疗。

近期研究表明,刺激抗原受体(T细胞和B细胞受体)、细胞因子受体等能激活哺乳动物雷帕霉素靶蛋白(mTOR),主要受磷脂酰肌醇3-激酶(PI3K)的调控,而PI3K/mTOR信号通路与Treg细胞生长、增殖密切相关[10],抑制mTOR可使CD4+CD25+Treg细胞增加[11]。PI3K相关信号通路受磷酸酶和张力蛋白同源基因(PTEN)的负反馈调节[12],而miRNA-24能抑制PTEN表达[13],且有动物研究[14]发现其能抑制胰岛β细胞增殖。

因此,本研究探讨T1DM患者调节性Treg亚群比例,血清miRNA-24、mTOR水平,并分析miRNA-24、mTOR与调节性Treg亚群比例的相关性,旨在为T1DM免疫治疗提供参考。

1 资料与方法 1.1 一般资料

选择2020年1月至2022年1月在南通大学附属常熟医院内分泌科就诊的40例T1DM患者为T1DM组,其中男性18例、女性22例,年龄15~53岁,平均年龄(31.75±8.68)岁;病程为3个月~15年,平均病程(6.38±3.78)年。T1DM诊断符合1999年WHO标准。纳入标准:(1)起病后长期依赖胰岛素治疗,且初次治疗时C肽低于1.1 ng/mL;(2)糖尿病4项抗体,包括GAD抗体(GADA)、蛋白酪氨酸磷酸酶抗体(IA-2A)、锌转运体8自身抗体(ZnT8A)、胰岛细胞自身抗体(ICA)中至少1项为阳性。排除标准:(1)6个月内接受任何影响RNA合成和转录的药物;(2)急性感染;(3)合并肿瘤及其他免疫疾病。T1DM患者中,GADA阳性26例(44.83%)、IA-2A阳性4例(6.90%)、ZnT8A阳性12例(20.69%)、CA阳性16例(27.59%)。选择同期在本院进行健康体检者40例作为对照组,其中男性21例、女性19例,年龄18~65岁,平均年龄(32.03±10.01)岁。本研究经常熟市第二人民医院伦理委员会批准(2020-KY-014),受试者均签署知情同意书。

1.2 流式细胞术检测Treg细胞及亚群

所有受试者均为空腹8 h状态下于清晨采用真空促凝管抽取肘静脉血10 mL(2份),一份2 h内以2 500 r/min(r=10 cm)离心20 min分离血清,放入﹣80℃冰箱冻存;另一份在4 h内行流式细胞术检测。

通过Ficoll密度梯度离心法分离人外周血单个核细胞(PBMC),分别用抗人CD4抗体(FITC,BD公司)、抗人CD8抗体(PerCP-Cy5.5,Abcam公司)、抗人CD25抗体(APC,BD公司)、抗人CD45RA抗体(Alexa Flour 700TM,BD公司)、抗人CD127抗体(PE,Abcam公司)于室温避光进行细胞表面标记30 min;PBS清洗2次,用Fix/Perm缓冲液室温固定45 min;PBS清洗2次,用相应抗体于室温避光进行细胞内标记30 min。用流式细胞仪检测总Treg细胞(CD4+CD25hiCD127low)占比,CD45RA+Treg(rTreg)、CD45RO+Treg(eTreg)比例,计算eTreg/rTreg比值。

1.3 RT-qPCR检测miRNA-24水平

提取血浆总RNA,并用微量核酸蛋白仪测定RNA纯度。将纯度符合要求的RNA反转录为cDNA,引物序列见表 1。采用2﹣ΔΔCt法计算miRNA-24的相对表达水平,其中ΔCt=Ct目的基因-CtU6,ΔΔCt=ΔCtT1DM组-ΔCt对照组

表 1 引物序列
引物名称 F (5'-3') R (5'-3')
miR-24 UGGCUCAGUUCAGCAGGAACAG GUUCCUGCUGAACUGAGCCAUU
U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
1.4 ELISA检测mTOR水平

所有血清样品用ELISA试剂盒(Bio-Techne)提供的稀释剂按1∶2稀释后,依据试剂盒说明书进行检测,通过6点校准曲线从标准曲线直接估计血清mTOR浓度。

1.5 统计学处理

采用SPSS 22.0及PRISM 9.0软件进行统计学分析,符合正态分布的计量资料以x±s表示,组间比较采用t检验。采用Pearson法分析miRNA-24及mTOR与T1DM患者Treg细胞亚群比例的相关性。检验水准(α)为0.05。

2 结果

2.1 PBMC中Treg及其亚群比例比较结果(表 2)显示:两组总Treg比例差异无统计学意义。两组eTreg、rTreg亚群占总Treg细胞的比例差异有统计学意义(P<0.05);T1DM组eTreg/rTreg比值小于对照组(P<0.05)。

表 2 两组患者PBMC中CD4+Treg及其亚群比例比较 
n=40, x±s
指标 T1DM组 对照组 t P
Treg/% 7.63±1.46 7.98±1.99 0.89 0.38
eTreg/% 2.39±0.93 3.17±1.77 2.48 0.02
rTreg/% 4.91±1.49 4.08±1.64 2.35 0.02
eTreg/rTreg比值 0.57±0.37 1.32±2.22 2.11 0.04
2.2 血浆中miRNA-24、mTOR表达水平比较

结果(表 3)显示:T1DM患者血浆中miRNA-24表达水平低于对照组(P<0.001);T1DM组血浆中mTOR表达水平高于对照组(P=0.04)。

表 3 两组患者血浆中miRNA-24、mTOR的表达情况比较 
n=40, x±s
指标 T1DM组 对照组 t P
miRNA-24 1.81±0.38 2.26±0.42 4.97 <0.001
mTOR/ (ng·mL﹣1) 5.05±3.03 3.69±2.83 2.08 0.04
mTOR:哺乳动物雷帕霉素靶蛋白。
2.3 T1DM各亚组间miRNA-24、mTOR和Treg亚群比较 2.3.1 糖尿病抗体亚组间比较

按糖尿病抗体阳性数将T1DM患者分为单抗体亚组及多抗体(≥2个抗体)亚组,结果(表 4)显示:两亚组间miRNA-24水平、mTOR水平、总Treg及其亚群比例、eTreg/rTreg比值差异均无统计学意义。

表 4 不同抗体阳性数T1DM患者miRNA-24、mTOR及和Treg亚群比较
指标 单抗体亚组
n=23)
多抗体亚组
n=17)
t P
miRNA-24 1.88±0.39 1.71±0.37 1.41 0.17
mTOR/ (ng·mL﹣1) 4.76±2.44 5.44±3.72 0.69 0.49
Treg/% 7.96±1.01 7.39±1.71 1.22 0.23
eTreg/% 2.31±0.93 2.58±0.70 1.02 0.31
rTreg/% 4.81±1.64 5.04±1.06 0.49 0.62
eTreg/rTreg比值 0.59±0.31 0.55±0.36 0.42 0.68
mTOR:哺乳动物雷帕霉素靶蛋白;Treg;调节性T细胞;eTreg:效应Treg细胞;rTreg:静息Treg细胞。
2.3.2 血糖控制亚组间比较

T1DM患者的糖化血红蛋白为(8.29±1.19)%,按糖化血红蛋白7.5%为切点,分成血糖控制良好亚组(糖化血红蛋白<7.5%)及血糖控制不佳亚组(糖化血红蛋白≥7.5%),结果(表 5)显示:两亚组间miRNA-24水平、mTOR水平、总Treg及其亚群比例、eTreg/rTreg比值差异均有统计学意义(均P<0.05)。

表 5 不同血糖控制T1DM患者miRNA-24、mTOR及和Treg亚群比较
指标 血糖控制良好亚组
n=11)
血糖控制不佳亚组
n=29)
t P
miRNA-24 2.12±0.45 1.69±0.28 3.67 <0.001
mTOR/ (ng·mL﹣1) 3.35±1.81 5.69±3.17 2.32 0.03
Treg/% 7.04±1.09 7.99±1.35 2.09 0.04
eTreg/% 1.96±1.20 2.60±0.59 2.26 0.03
rTreg/% 4.20±1.79 5.17±1.17 2.03 0.04
eTreg/rTreg比值 0.80±0.32 0.50±0.30 2.84 0.007
mTOR:哺乳动物雷帕霉素靶蛋白;Treg;调节性T细胞;eTreg:效应Treg细胞;rTreg:静息Treg细胞。
2.4 T1DM患者血浆中miRNA-24、mTOR与Treg亚群的相关性分析

结果(图 1)显示:T1DM患者血浆中miRNA-24与eTreg(r=0. 40,P=0.01)、eTreg/rTreg比值(r=0.66,P<0.001)正相关,与rTreg负相关(r=﹣0. 69,P<0.001);mTORc与eTreg(r=﹣0.32,P=0.04)、eTreg/rTreg比值(r=﹣0.40,P=0.01)负相关,与rTreg正相关(r=0. 48,P=0.001)。

图 1 T1DM患者血浆中miRNA-24、mTOR与Treg亚群的相关性分析 mTOR:哺乳动物雷帕霉素靶蛋白;Treg;调节性T细胞;eTreg:效应Treg细胞;rTreg:静息Treg细胞。
3 讨论

T1DM的发病率在全球呈上升趋势。全球T1DM患病人数在2017年达900万,占糖尿病患病总人数的2%[15]。T1DM是一种T细胞介导的器官特异性自身免疫性疾病。T1DM小鼠Treg细胞在体外免疫抑制活性明显减低,且凋亡水平增高[16]。但与健康对照组相比,T1DM患者Treg细胞数量未发生明显变化[17]。Treg细胞亚群失衡会引起T细胞异常活化并增殖,从而加速胰岛β细胞损伤。Faustman等[18]研究发现,T1DM患者T细胞存在与CD45蛋白及其剪接变体CD45RA和CD45RO相关的激活缺陷。本研究也发现,与健康人群相比,T1DM患者PBMC中Treg比例无明显变化,但Treg存在上述激活缺陷,表现为rTreg数量增加、eTreg数量减少,eTreg/rTreg比值减小。这与其他免疫疾病(如狼疮[19])患者的表现相似。

miRNA在胰岛细胞分化、数量和功能维持方面都发挥重要作用。在小鼠胰腺发育早期敲除Dicerl基因后,小鼠胰岛β细胞数量减少为不及正常小鼠的10%,其机制可能为miRNA-24等miRNA表达水平降低,使胰岛素相关转录抑制因子Bhlhe22和Sox6蛋白表达増加[20]。本研究中,T1DM患者外周血miRNA-24表达减少,与Samandari等[21]的研究相似。但也有研究[22]显示,T1DM患者外周血中miRNA-24的表达增加。T1DM患者miRNA-24表达增加可能与其血糖控制不佳有关[23]。本研究亚组分析显示,血糖控制良好的T1DM患者外周血中miRNA-24浓度高于血糖控制不佳者。另有研究[23]显示,miRNA-24与T1DM患者血浆中C肽残存存在相关性。但本研究未发现T1DM患者不同阳性抗体数量亚组间miRNA-24表达差异,可能与纳入患者病程较长有关。

mTOR是存在于胞质中一种丝氨酸/苏氨酸激酶,属于磷脂酰肌醇激酶相关蛋白激酶家族(PIKK)。Treg细胞的免疫抑制功能受到PI3K/mTOR通路的严密调控,PI3K/mTOR通路的抑制或过度激活均影响Treg细胞的稳定和功能[11]。mTOR会诱导一些胞内代谢物,如法尼基焦磷酸盐、香叶基焦磷酸盐的产生,通过表观修饰改变叉头状转录因子成员Foxp3的表达,进而促进eTreg细胞的增殖与存活[24],而增强TCR信号强度相关转录因子可促进eTreg细胞的分化[25]。本研究发现,T1DM患者血浆中mTOR浓度升高,与eTreg比例正相关,与上述研究结论相似。此外,Duan等[26]的研究显示,mTOR会通过糖酵解和脂质氧化途径来影响T细胞分化和效应,进而对胰岛细胞自身免疫进行调控,达到调控血糖的作用。本研究进一步的亚组分析中,血糖控制良好的T1DM患者血浆中mTOR浓度低于血糖控制不佳者,且Treg亚群分布存在差异。但是,本研究未发现T1DM患者不同阳性抗体数量亚组间mTOR表达差异,可能与本研究中患者病程大多超过3年、部分抗体滴度下降有关。

综上所述,本研究显示,T1DM患者PBMC中Treg亚群发生变化,同时miRNA-24表达减少、mTOR表达增加,且与血糖控制存在一定关系;miRNA-24、mTOR均与Treg亚群、eTreg/rTreg比值存在相关性,提示miRNA-24、mTOR可能参与Treg调节,导致T1DM患者免疫失调。今后需增加样本量,采用多中心研究验证本研究结论,并通过细胞实验和动物实验深入探讨miRNA-24、mTOR参与T1DM患者免疫调节的机制。

利益冲突:所有作者声明不存在利益冲突。

参考文献
[1]
SYED F Z. Type 1 diabetes mellitus[J]. Ann Intern Med, 2022, 175(3): ITC33-ITC48. [DOI]
[2]
CLARK M, KROGER C J, KE Q, et al. Coreceptor therapy has distinct short- and long-term tolerogenic effects intrinsic to autoreactive effector T cells[J]. JCI Insight, 2021, 6(17): e149130. [DOI]
[3]
STEWART J M, POSGAI A L, LEON J J, et al. Combination treatment with antigen-specific dual-sized microparticle system plus anti-CD3 immunotherapy fails to synergize to improve late-stage type 1 diabetes prevention in nonobese diabetic mice[J]. ACS Biomater Sci Eng, 2020, 6(10): 5941-5958. [DOI]
[4]
BJÖRKLUND A, HALS I K, GRILL V, et al. Latent autoimmune diabetes in adults: background, safety and feasibility of an ongoing pilot study with intra-lymphatic injections of GAD-alum and oral vitamin D[J]. Front Endocrinol, 2022, 13: 926021. [DOI]
[5]
TANG Q Z, ADAMS J Y, PENARANDA C, et al. Central role of defective interleukin-2 production in the triggering of islet autoimmune destruction[J]. Immunity, 2008, 28(5): 687-697. [DOI]
[6]
NAGY N, KABER G, KRATOCHVIL M J, et al. Weekly injection of IL-2 using an injectable hydrogel reduces autoimmune diabetes incidence in NOD mice[J]. Diabetologia, 2021, 64(1): 152-158. [DOI]
[7]
MAGG T, WIEBKING V, CONCA R, et al. IPEX due to an exon 7 skipping FOXP3 mutation with autoimmune diabetes mellitus cured by selective TReg cell engraftment[J]. Clin Immunol, 2018, 191: 52-58. [DOI]
[8]
DONG S, HIAM-GALVEZ K J, MOWERY C T, et al. The effect of low-dose IL-2 and Treg adoptive cell therapy in patients with type 1 diabetes[J]. JCI Insight, 2021, 6(18): e147474. [DOI]
[9]
SERR I, DROST F, SCHUBERT B, et al. Antigen-specific treg therapy in type 1 diabetes-challenges and opportunities[J]. Front Immunol, 2021, 12: 712870. [DOI]
[10]
HUANG H L, LONG L Y, ZHOU P P, et al. mTOR signaling at the crossroads of environmental signals and T-cell fate decisions[J]. Immunol Rev, 2020, 295(1): 15-38. [DOI]
[11]
JIANG Q, HUANG X B, YU W J, et al. mTOR signaling in the regulation of CD4+ T cell subsets in periodontal diseases[J]. Front Immunol, 2022, 13: 827461. [DOI]
[12]
MAEHAMA T, DIXON J E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3, 4, 5-trisphosphate[J]. J Biol Chem, 1998, 273(22): 13375-13378. [DOI]
[13]
ZHU Y X, SUN Y, ZHOU Y C, et al. MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis[J]. J Mol Cell Biol, 2019, 11(9): 747-760. [DOI]
[14]
ZHENG X Q, LI J S, PENG C, et al. MicroRNA-24 induces cisplatin resistance by targeting PTEN in human tongue squamous cell carcinoma[J]. Oral Oncol, 2015, 51(11): 998-1003. [DOI]
[15]
何斌斌, 李霞, 周智广. 《中国1型糖尿病诊治指南(2021版)》解读[J]. 中华糖尿病杂志, 2022, 14(11): 1123-1127.
HE B B, LI X, ZHOU Z G. Interpretation of Guidelines for the diagnosis and treatment of type 1 diabetes mellitus in China (2021 edition)[J]. Chin J Diabetes, 2022, 14(11): 1123-1127. [DOI]
[16]
CABELLO-KINDELAN C, MACKEY S, SANDS A, et al. Immunomodulation followed by antigen-specific treg infusion controls islet autoimmunity[J]. Diabetes, 2020, 69(2): 215-227. [DOI]
[17]
陈姝, 肖蕾, 付麒, 等. 1型糖尿病患者外周血Treg细胞亚群频率及Helios、细胞毒性T淋巴细胞相关抗原4分子表型分析[J]. 中华糖尿病杂志, 2018, 10(3): 216-220.
CHEN S, XIAO L, FU Q, et al. Study on the frequency and expression of Helios and cytotoxic T lymphocyte antigen 4 in CD4 Treg subsets of type 1 diabetic patients[J]. Chin J Diabetes Mellitus, 2018, 10(3): 216-220. [DOI]
[18]
FAUSTMAN D, SCHOENFELD D, ZIEGLER R. T-lymphocyte changes linked to autoantibodies. Association of insulin autoantibodies with CD4+CD45R+ lymphocyte subpopulation in prediabetic subjects[J]. Diabetes, 1991, 40(5): 590-597. [DOI]
[19]
KATO H, PERL A. Blockade of treg cell differentiation and function by the interleukin-21-mechanistic target of rapamycin axis via suppression of autophagy in patients with systemic lupus erythematosus[J]. Arthritis Rheumatol, 2018, 70(3): 427-438. [DOI]
[20]
MELKMAN-ZEHAVI T, OREN R, KREDO-RUSSO S, et al. miRNAs control insulin content in pancreatic β-cells via downregulation of transcriptional repressors[J]. EMBO J, 2011, 30(5): 835-845. [DOI]
[21]
SAMANDARI N, MIRZA A H, NIELSEN L B, et al. Circulating microRNA levels predict residual beta cell function and glycaemic control in children with type 1 diabetes mellitus[J]. Diabetologia, 2017, 60(2): 354-363. [DOI]
[22]
GARAVELLI S, BRUZZANITI S, TAGLIABUE E, et al. Plasma circulating miR-23~27~24 clusters correlate with the immunometabolic derangement and predict C-peptide loss in children with type 1 diabetes[J]. Diabetologia, 2020, 63(12): 2699-2712. [DOI]
[23]
MAŁACHOWSKA B, WYKA K, NOWICKA Z, et al. Temporal dynamics of serum let-7g expression mirror the decline of residual beta-cell function in longitudinal observation of children with type 1 diabetes[J]. Pediatr Diabetes, 2018, 19(8): 1407-1415. [DOI]
[24]
WANG M, CASEY P J. Protein prenylation: unique fats make their mark on biology[J]. Nat Rev Mol Cell Biol, 2016, 17(2): 110-122. [DOI]
[25]
SU W, CHAPMAN N M, WEI J, et al. Protein prenylation drives discrete signaling programs for the differentiation and maintenance of effector treg cells[J]. Cell Metab, 2020, 32(6): 996-1011.e7. [DOI]
[26]
DUAN W, DING Y C, YU X F, et al. Metformin mitigates autoimmune insulitis by inhibiting Th1 and Th17 responses while promoting Treg production[J]. Am J Transl Res, 2019, 11(4): 2393-2402.

文章信息

引用本文
沈婷, 居悦俊, 王冠怡, 孔颖宏. 1型糖尿病患者血清miRNA-24、mTOR与Treg细胞亚群比例的相关性[J]. 中国临床医学, 2023, 30(4): 658-663.
SHEN Ting, JU Yue-jun, WANG Guan-yi, KONG Ying-hong. Correlation between serum miRNA-24, mTOR and ratio of Treg cell subsets in patients with type 1 diabetes mellitus[J]. Chinese Journal of Clinical Medicine, 2023, 30(4): 658-663.
通信作者(Corresponding authors).
孔颖宏, Tel: 0512-52925609, E-mail: kongyinghong@163.com.
基金项目
常熟市卫生健康委员会重点资助项目(CSWS202009)
Foundation item
Supported by Key Project of Changshu Municipal Health Commission (CSWS202009)

工作空间