文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (3): 404-413      DOI: 10.12025/j.issn.1008-6358.2023.20230240
0
维持性血液透析患者超声心动图异常情况及危险因素分析
聂宇昕 , 张沥文 , 杨强 , 曹学森 , 孙敏敏 , 丁小强     
复旦大学附属中山医院肾内科,上海市肾病与透析研究所,上海肾脏疾病临床医学中心,上海市肾脏疾病与血液净化重点实验室,上海市血液透析质量控制中心,上海 200032
摘要目的: 分析维持性血液透析(maintenance hemodialysis, MHD)患者经胸超声心动图异常参数及相关危险因素,探讨其与患者预后的相关性。方法: 前瞻性纳入2017年6月在复旦大学附属中山医院肾内科诊治的MHD患者,随访至2021年12月,记录随访期间患者超声心动图异常参数、患者转归及死亡原因。计算患者左心室质量、左心室质量指数,并记录左心室肥厚(left ventricular hypertrophy, LVH)情况和相对室壁厚度(relative wall thickness, RWT)。采用二元logistic回归模型分析LVH、RWT异常与临床变量、实验室指标的相关性。采用多因素Cox回归模型分析影响MHD患者预后的危险因素。采用Kaplan-Meier和log-rank检验分析超声心动图参数异常对患者预后的影响。结果: 共纳入MHD患者453例,房性结构异常比例高于室性结构异常比例(63.79% vs 48.34%),舒张功能异常比例高于收缩功能异常比例(75.72% vs 5.96%)。269例(59.38%)患者存在LVH,207例(45.70%)患者存在RWT异常,139例(30.68%)患者同时存在LVH和RWT异常。二元logistic回归分析显示,LVH与性别、肺动脉收缩压、血钙、氨基末端脑钠肽前体(NT-proBNP)及有无主动脉瓣反流相关(P<0.05);RWT异常与心肌肌钙蛋白T(cTnT)升高相关(P=0.029)。5年随访期内,210例(46.36%)患者死亡,其中心血管事件占14.76%。多因素Cox回归分析显示,主动脉瓣钙化、免疫球蛋白M(IgM)降低和cTnT升高是患者死亡的独立相关因素(P<0.05)。Kaplan-Meier和log-rank检验显示,无LVH患者(P=0.020)、RWT正常患者(P=0.006)生存期更长,合并主动脉瓣钙化(P<0.001)、二尖瓣钙化(P<0.001)、中重度主动脉瓣反流(P=0.023)、三尖瓣反流(P<0.001)患者的生存期缩短。结论: 超声心动图参数异常在MHD患者中常见,舒张功能异常较收缩功能异常更常见;合并LVH、RWT异常、瓣膜钙化或瓣膜反流患者预后更差。
关键词维持性血液透析    心血管疾病    超声心动图    左心室肥厚    相对室壁厚度    
Echocardiography abnormalities and related risk factors in patients with maintenance hemodialysis
NIE Yu-xing , ZHANG Li-wen , YANG Qiang , CAO Xue-sen , SUN Min-min , DING Xiao-qiang     
Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai Institute of Nephropathy and Dialysis, Shanghai Clinical Medical Center of Renal Diseases, Shanghai Key Laboratory of Kidney Diseases and Blood Purification, Shanghai Hemodialysis Quality Control Center, Shanghai 200032, China
Abstract: Objective: To analyze the abnormal parameters of echocardiography and related risk factors in patients with maintenance hemodialysis (MHD), and to explore the correlation between abnormal parameters and patients' prognosis. Methods: Patients with MHD in Department of Nephrology, Zhongshan Hospital, Fudan University in June 2017 were prospectively enrolled and followed up to December 2021. The abnormal echocardiography parameters, prognosis and cause of death were recorded. The left ventricular mass (LVM) and left ventricular mass index (LVMI) were calculated, and the patients with left ventricular hypertrophy (LVH) or abnormal relative wall thickness (RWT) were recorded. Binary logistic regression model was used to analyze the correlation between LVH, abnormal RWT and clinical variables, laboratory indicators. Multivariate Cox regression model was used to analyze the risk factors affecting the prognosis of patients with MHD. Kaplan-Meier and log-rank test were used to analyze the effects of abnormal echocardiographic parameters on the prognosis. Results: A total of 453 patients were included in the study. The proportion of atrial structural abnormalities was higher than that of ventricular structural abnormalities (63.79% vs 48.34%), the proportion of diastolic dysfunction was higher than that of systolic dysfunction (75.72% vs 5.96%). Among the 453 patients, 269 (59.38%) patients had LVH, 207 (45.70%) patients had abnormal RWT, and 139 (30.68%) patients had both LVH and abnormal RWT. Binary logistic regression analysis showed that LVH was significantly correlated with pulmonary artery systolic pressure, serum calcium, N-terminal pro-brain natriuretic peptide (NT-proBNP), gender, and with or without aortic regurgitation (P < 0.05). Abnormal RWT was positively correlated with cardiac troponin T (cTnT, P=0.029). During the 5-year follow-up period, 210 (46.36%) patients died, with cardiovascular events accounting for 14.76%. Multivariate Cox regression analysis showed that aortic valve calcification, reduced immunoglobulin M (IgM) and elevated cTnT were independent ralated factors for death (P < 0.05). Kaplan-Meier and log-rank tests showed that the survival time of patients without LVH (P=0.020) and patients with normal RWT (P=0.006) was significantly longer, and survival time of patients with aortic valve calcification (P < 0.001), mitral valve calcification (P < 0.001), moderate and severe aortic regurgitation (P=0.023) and tricuspid regurgitation (P < 0.001) was significantly shorter. Conclusions: Abnormal echocardiographic parameters are common in patients with MHD, and the overall prognosis of patients with LVH, abnormal RWT, valvular calcification or valvular regurgitation is poorer.
Key words: maintenance hemodialysis    cardiovascular disease    echocardiography    left ventricular hypertrophy    relative wall thickness    

心血管疾病(cardiovascular disease, CVD)是维持性血液透析(maintenance hemodialysis, MHD)患者的主要死亡原因。美国肾脏病数据系统(United States Renal Data System, USRDS)显示,MHD患者心血管年死亡率达16.27%,其中心功能不全、心律失常为重要原因[1]。MHD患者常合并高血压、糖尿病、脂代谢紊乱等CVD传统危险因素,同时尿毒症毒素、氧化应激、微炎症状态等尿毒症因素影响其心脏结构和功能。此外,由于残余肾功能丢失,MHD患者须通过间歇性透析维持体内容量平衡。患者在非透析时处于容量过负荷状态,而透析时容量快速下降,这种“潮汐式”容量波动也易造成其心脏结构异常。

本研究对复旦大学附属中山医院近年收治的MHD患者超声心动图(简称“心超”)结果进行随访,分析MHD患者心超异常情况及相关危险因素,并探讨异常心超参数与患者预后的相关性。

1 资料与方法 1.1 研究对象

本研究为单中心前瞻性队列研究,选择2017年6月在复旦大学附属中山医院肾内科诊治的MHD患者。纳入标准:(1)年龄≥18岁;(2)透析龄≥3个月;(3)每周透析3次,每次4 h;(4)病情稳定。排除标准:(1)既往合并结构性心脏病或心肌梗死;(2)血液透析联合腹膜透析;(3)预期寿命<3个月。随访至患者死亡或到达随访终点(2022年6月30日)。本研究设计遵守《赫尔辛基宣言》,获得复旦大学附属中山医院伦理委员会审核批准(2008-114),所有患者知情并签署知情同意书。

1.2 透析方法

所有患者均使用GAMBRO AK 200 S和费森尤斯低通量中空聚砜膜透析器(FX10)或GAMBRO聚醚砜膜透析器进行透析。根据患者体表面积选择透析器膜面积(1.4 m2或1.6 m2),并给予个体化处理。透析液组成:钠离子138 mmol/L、钾离子2 mmol/L、钙离子1.25 mmol/L、镁离子0.5 mmol/L和碳酸氢盐32 mmol/L。透析液流速:500 mL/min;透析液温度:37℃。根据患者透析间期体质量增长(interdialytic weight gain, IDWG)个体化设置超滤量(ultrafiltration, UF)。根据患者血管通路情况设置血泵转速为200~250 mL/min。单次血液透析治疗时长为4 h。根据患者出凝血情况使用低分子肝素。

1.3 观察指标 1.3.1 一般资料

(1)人口学资料,包括性别、年龄、身高、体质量;(2)透析相关情况,包括透析龄、透析血管通路等;(3)既往史,包括肾脏原发病、合并症、用药史(6个月内)、冠状动脉粥样硬化性心脏病病史和心力衰竭病史。

1.3.2 心超参数

经胸心超测量参数包括主动脉根部内径(aortic root diameter, AoD;正常值25~38 mm),左心房内径(left atrium diameter, LAD;正常值24~40 mm),左心室舒张末期内径(left ventricular end-diastolic dimension,LVEDD;正常值37~56 mm),左心室收缩末期内径(left ventricular end-systolic dimension, LVESD;正常值22~38 mm),室间隔(interventricular septum, IVS)厚度(正常值7~12 mm),左心室后壁(left ventricular posterior wall, LVPW)厚度(正常值6~12 mm),肺动脉收缩压(pulmonary artery systolic pressure, PASP;正常值≤40 mmHg),左心室射血分数(left ventricular ejection fraction, LVEF;正常值50%~70%);二尖瓣舒张早期血流速度(E)/二尖瓣舒张晚期血流速度(A)比值(正常值>1),二尖瓣E峰减速时间(deceleration time, DT;正常值160~220 s),S波峰值速度(正常值>5 cm/s)。所有研究对象每年接受心超随访,直至死亡或到达随访终点。选择患者入组后基线数据进行分析。

采用美国超声心动图学会[2]公式计算左心室质量(left ventricular mass, LVM)和左心室质量指数(left ventricle mass index, LVMI)。LVM=0.8×1.04×[(IVS+LVPW+LVEDD)3-LVEDD3]+0.6;LVMI=LVM/体表面积。当LVMI大于95 g/m2(女性)或115 g/m2(男性)时,判断为左心室肥厚(left ventricular hypertrophy, LVH)。相对室壁厚度(relative wall thickness, RWT)=2×LVPW/LVEDD;RWT正常值≤0.42。

1.3.3 实验室指标

记录患者入组后首次透析时血细胞计数、血红蛋白(hemoglobin,Hb)、高敏C反应蛋白(high-sensitivity C-reactive protein,hsCRP)、白蛋白、球蛋白、血清肌酐(serum creatinine, sCr)、尿酸(uric acid, UA)、血清全段甲状旁腺素(intact parathyroid hormone, iPTH)、总胆固醇(total cholesterol, TC)、三酰甘油(triglyceride, TG)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C)、同型半胱氨酸(homocysteine, Hcy)、心肌肌钙蛋白T(cardiac troponin T, cTnT)和氨基末端脑钠肽前体(N-terminal pro-B-type natriuretic peptide, NT-proBNP)等水平。之后每6个月复查上述指标。

1.4 统计学处理

采用SPSS 20.0进行统计学分析。正态分布的计量资料以x±s表示。计数资料以n(%)表示,采用χ2检验。采用Pearson相关性分析和二元logistic回归模型分析血液透析相关左心室重构的相关因素。采用单因素和多因素Cox回归模型分析影响MHD患者预后的危险因素;采用Kaplan-Meier法绘制生存曲线,进行log-rank检验。检验水准(α)为0.05。

2 结果 2.1 研究对象一般情况

共筛查MHD患者565例,排除既往合并结构性心脏病病史患者13例,既往心肌梗死病史患者5例,血液透析联合腹膜透析患者5例,预期寿命<3个月患者2例,失访、肾移植患者87例,最终纳入453例。453例患者人口学资料、透析方式、原发病、既往史等见表 1

表 1 研究对象一般情况 
n=453
    指标 数值
性别n(%)  
    男性 272(60.04)
    女性 181(39.96)
年龄/岁 56.09±19.92
BMI/(kg·m-2) 22.72±3.43
透析龄/月 73.36±43.95
透析方式n(%)
    动静脉内瘘 410(90.51)
    中心静脉置管 43(9.49)
合并症n(%)
    糖尿病 118(26.04)
    高血压 269(59.38)
高血压用药史n(%)
    ACEI单药 16(5.95)
    ARB单药 22(8.18)
    BB单药 30(11.15)
    CCB单药 117(43.49)
    ≥2种药物联合使用 72(26.77)
    其他 12(4.46)
肾脏原发病
    原发性慢性肾小球肾炎 214(47.24)
    糖尿病肾病 77(17.00)
    高血压性肾损害 26(5.74)
    狼疮性肾炎 26(5.74)
    多囊肾病 66(14.57)
    其他* 4(9.71)
BMI:体质量指数;ACEI:血管紧张素转换酶抑制剂;ARB:血管紧张素受体拮抗剂;BB:β受体阻滞剂;CCB:钙离子拮抗剂。*肾小管间质炎症、梗阻性肾病和系统性疾病肾损害。
2.2 基线心超异常情况

经胸心超显示,患者平均AoD(33.33±3.35)mm,平均LAD(41.34±6.09)mm,平均LVEDD(48.88±6.56)mm,平均LVESD(31.25±6.16)mm,平均IVS(10.93±2.23)mm,平均LVPW(10.25±1.71)mm,平均PASP(33.10±12.01)mmHg(1 mmHg=0.133 kPa),中位LVEF 66%(61%, 69%);二尖瓣E峰DT(156.98±66.74)s,二尖瓣环收缩期S波峰值速度(8.16±2.54)cm/s。结果(表 2)显示:房性结构异常比例高于室性结构异常比例(63.79% vs 48.34%),舒张功能异常(E/A<1)比例高于收缩功能异常(LVEF<50%;75.72% vs 5.96%)。在存在二尖瓣、三尖瓣和主动脉瓣反流的患者中,中重度反流分别有29例(6.40%)、30例(6.62%)、87例(19.21%,图 1)。

表 2 基线超声心动图异常情况 
n=453
    参数 n(%)
基本参数  
    AoD>38 mm 30(6.62)
    LAD>40 mm 259(57.17)
    LVEDD>56 mm 49(10.82)
    LVESD>38 mm 48(10.60)
    IVS>12 mm 86(18.98)
    LVPW>12 mm 36(7.94)
    PASP>40 mmHg 135(29.80)
    LVEF<50% 27(5.96)
瓣膜病变
    二尖瓣钙化 71(15.67)
    主动脉瓣钙化 200(44.15)
    二尖瓣反流 272(60.04)
    主动脉瓣反流 196(43.27)
    三尖瓣反流 339(74.83)
二尖瓣血流图
    E/A<1 343(75.72)
二尖瓣E峰DT
    DT>220 s 28(6.18)
    DT<160 s 54(11.92)
S波峰值速度<5 cm/s 15(3.31)
AoD:主动脉根部内径;LAD:左心房内径;LVEDD:左心室舒张末期内径;LVESD:左心室收缩末期内径;IVS:室间隔;LVPW:左心室后壁;PASP:肺动脉收缩压;LVEF:左心室射血分数;E/A:二尖瓣舒张早期血流速度/二尖瓣舒张晚期血流速度;DT:减速时间。
图 1 各瓣膜反流情况
2.3 LVH与RWT异常情况及相关因素 2.3.1 LVH和(或)RWT异常的分布情况

453例患者中,同时合并LVH和RWT异常(RWT>0.42)的患者有139例(30.68%),合并LVH(130例,28.70%)或RWT异常者(68例,15.01%)有198例(43.71%),不合并LVH和(或)RWT异常者有116例(25.61%)。

2.3.2 LVH、RWT与其他临床、实验室指标的相关性分析

相关性分析和二元logistic回归分析显示:LVH与PASP升高、血钙降低、NT-proBNP水平升高、男性和主动脉瓣反流相关(P<0.05,表 3);RWT异常与患者cTnT升高相关(P=0.029,表 4)。

表 3 LVH与其他临床变量和实验室指标的相关性分析
    变量 相关性分析 二元logistic回归分析
相关系数(r P OR (95%CI) P
性别(男性vs女性) 0.16 0.001 2.51(1.26~4.99) 0.002
PASP 0.29 <0.01 1.03(1.01~1.06) 0.041
hsCRP 0.13 0.047 0.99(0.98~1.01) 0.198
sCr 0.14 0.018 1.00(0.99~1.01) 0.970
血钙 0.14 0.018 0.22(0.07~0.70) 0.010
NT-proBNP 0.20 0.001 1.00(1.00~1.00) 0.041
EPO 0.12 0.047 0.99(0.98~1.01) 0.200
主动脉瓣反流 0.10 0.039 1.52(1.03~2.24) 0.036
三尖瓣反流 0.19 <0.01 0.90(0.43~1.89) 0.779
PASP:肺动脉收缩压;hsCRP:高敏C反应蛋白;sCr:血清肌酐;NT-proBNP:氨基末端脑钠肽前体;EPO:促红细胞生成素。
表 4 RWT异常与其他临床变量和实验室指标的相关性分析
    变量 相关性分析 二元logistic回归分析
相关系数(r P OR (95%CI) P
二尖瓣钙化 0.19 0.001 2.21(0.87~5.57) 0.095
主动脉瓣钙化 0.11 0.028 1.14(0.62~2.11) 0.670
三尖瓣反流 0.11 0.024 1.08(0.75~1.54) 0.693
cTnT 0.13 0.035 4.48(3.55~7.76) 0.029
cTnT:心肌肌钙蛋白T。
2.4 MHD患者预后及相关因素 2.4.1 MHD患者预后

5年随访期内,210例(46.36%)患者死亡。死亡原因包括脑血管意外(46例,21.90%)、心血管事件(31例,14.76%)、感染(33例,15.71%)、消化道出血(20例,9.52%)、肿瘤(16例,7.62%)、猝死(23例,10.95%)、其他或无法分类(41例、19.52%)。

2.4.2 MHD患者预后的Cox回归分析

采用单因素和多因素Cox回归模型分析患者预后的影响因素,结果(表 5)显示:主动脉瓣钙化、免疫球蛋白M(immunoglobulin M, IgM)降低和cTnT升高是患者死亡的独立相关因素(P<0.05)。

表 5 影响MHD患者预后的单因素和多因素Cox回归分析
    变量 单因素Cox回归分析 多因素Cox回归分析
HR(95% CI) P HR(95% CI) P
LAD (每增加1 mm) 1.06(1.04~1.08) <0.001
IVS厚度(每增加1 mm) 1.20(1.04~1.28) <0.001
LVPW厚度(每增加1 mm) 1.13(1.04~1.22) 0.003
二尖瓣钙化 2.29(1.66~3.15) <0.001
二尖瓣反流 1.18(1.01~1.37) 0.038
主动脉瓣钙化 3.55(2.65~4.76) <0.001 3.00(1.27~7.01) 0.012
主动脉瓣反流 1.29(1.11~1.51) 0.001
三尖瓣反流 1.47(1.26~1.73) <0.001
肺动脉压 1.02(1.01~1.03) <0.001
IL-2R (每升高1 U/mL) 1.01(1.0~1.01) <0.001
IgM (每升高1 g/L) 0.24(0.11~0.51) <0.001 0.33(0.13~0.85) 0.021
hsCRP (每升高1 mg/L) 1.01(1.00~1.02) 0.060
RDW (每升高1%) 1.26(1.12~1.41) <0.001
白蛋白(每升高1 g/L) 0.82(0.76~0.88) <0.001
ALP (每升高1 U/L) 1.01(1.00~1.01) <0.001
NK细胞 1.01(1.00~1.01) <0.001
FT3 (每升高1 pmol/L) 0.62(0.46~0.83) 0.002
cTnT (每升高0.1 ng/mL) 16.58(12.80~24.86) <0.001 2.75(2.34~3.76) 0.031
NT-proBNP (每升高1 000 pg/mL) 1.04(1.02~1.06) <0.001
LAD:左心房内径;IVS:室间隔;LVPW:左心室后壁;IL-2R:白介素2受体;IgM:免疫球蛋白M;hsCRP:高敏C反应蛋白;RDW:红细胞分布宽度;ALP:碱性磷酸酶;FT3:游离三碘甲状腺原氨酸;cTnT:心肌肌钙蛋白T;NT-proBNP:氨基末端脑钠肽前体。
2.4.3 LVH、RWT对MHD患者预后的影响

结果(图 2)显示:LVH患者(P=0.020)、RWT异常患者(P=0.006)生存期缩短;有LVH+RWT异常的患者死亡风险更高(P=0.022)。

图 2 以LVH和RWT分组的MHD患者Kaplan-Meier生存曲线
2.4.4 瓣膜病变对MHD患者预后的影响

结果(图 3)显示:合并主动脉瓣钙化(P<0.001)、二尖瓣钙化(P<0.001)、中重度主动脉瓣反流(P=0.023)及中重度三夹瓣反流(P<0.001)患者的生存期显著缩短(P<0.05)。无、轻微或轻度二尖瓣反流患者与中重度二尖瓣反流患者生存期差异无统计学意义。

图 3 以瓣膜病变分组的MHD患者Kaplan-Meier生存曲线
3 讨论

MHD患者死亡风险较普通人群显著升高[1],接近一半的死亡事件由心血管疾病造成,而猝死约占心血管死亡的50%[3]。心脏结构和功能异常可能是血透患者猝死的原因之一。因此,通过心超早期检出心脏异常并尽早干预对改善MHD患者预后具有重要意义。

3.1 LAD增加

USRDS 2012年年度报告[4]将心超推荐为终末期肾脏病(end-stage renal disease, ESRD)患者心脏评估和指导治疗的手段之一。尽管ESRD患者心房和心室均出现结构和功能异常,但发生率不同。本研究中,存在房性结构异常的患者比例高于存在室性结构异常的患者(63.79% vs 48.34%)。LAD增加原因:(1)容量过负荷、二尖瓣反流、动静脉内瘘、贫血等导致左心房前负荷增加;(2)高血压、二尖瓣钙化、左心室肥厚、左心室收缩功能障碍等造成左心房后负荷增加。MHD患者中,LAD和左心房容积(left atrium volume, LAV)增加与患者不良预后有关。研究[5-6]表明,LAV可独立预测ESRD患者的全因死亡风险。

3.2 LVM增加和LVH

随着肾功能减退,LVH发病率逐渐升高[7-8],超过70%的ESRD患者在透析起始便存在LVH[9-10]。LVH主要是心脏对反复容量和(或)压力过负荷的适应性重塑。慢性肾脏病-矿物质和骨代谢异常(hronic kidney disease-mineral and bone disorder, CKD-MBD)、肾素-血管紧张素系统激活、肾性贫血、血管钙化和交感神经活性增强等非血流动力学因素可直接刺激心肌细胞生长,导致LVH[11-15]。本研究采用Devereux公式计算LVMI存在一定的局限性:(1)公式计算基于左心室为立方体的假设,与MHD患者真实情况不完全相符;(2)超声图像上心外膜和心内膜边界不清楚时,无法可靠测量左心室内径;(3)指标均在单个平面上测量,不同平面可能存在一定差异;(4)血透患者在透析期间可能会经历显著的容量波动,血透前左心室容积常大于血透后。因此,理想的心超检查应选择在非透析日和患者体质量达到干体质量时进行,以避免LVMI测量误差。

LVM或LVMI广泛用于评估心脏损害。然而,即使LVM正常的患者也可能已经存在心肌损伤。在心脏损伤早期,患者可能表现为RWT异常、LVMI正常的向心性重塑,此时,仅评价LVMI可能漏诊[16]。心血管死亡风险和复合终点事件(心源性死亡、再次梗死、心力衰竭和脑卒中)风险在正常心脏几何形态ESRD患者中最低,其次分别为向心性重塑、偏心性肥厚和向心性肥厚患者。异常RWT带来的风险独立于LVMI[17-18]。本研究结果表明,孤立性RWT异常的比例(15.01%)不低。存在LVH和(或)RWT异常的患者比例达74.39%。因此,在临床应用中,结合LVMI和RWT对患者心脏几何学形态进行综合评价,对于发现早期和临界状态的心脏结构异常有重要价值[19]

LVH可预测血透患者的死亡和心血管事件风险[20-21]。进行性增加的LVMI是血透患者心血管死亡的预测因子[22]。增加的LVMI可能通过纠正容量过负荷状态、改善代谢、增加血透频率或肾移植而部分逆转[23-27]。London等[28]发现,控制血压和纠正贫血可逆转增加的LVM,并降低死亡风险。本研究同样表明,合并LVH和(或)RWT异常患者的全因死亡风险更高。因此,延缓或逆转LVH可能有助于改善预后[2]

3.3 肺动脉压升高

本研究发现,约30%的MHD患者合并肺动脉高压,且肺动脉压升高是LVH发生的相关因素。研究[29]表明,肺动脉高压与患者不良预后相关。肺血管阻力增加、左心室收缩和舒张功能障碍、容量过负荷和使用自体动静脉内瘘进行透析等因素共同促进肺动脉高压发生[30-32]。暴露于生物不相容的透析膜使得中性粒细胞活化并迁移至肺部,是血透患者肺动脉高压的另一个潜在因素[33]。尽管血透患者普遍存在肺动脉高压,但目前缺乏有效治疗措施,充分透析、精准容量控制和使用生物相容性较好的透析材料可能对肺动脉高压有一定预防作用。

3.4 瓣膜病变

本研究发现血透患者普遍存在瓣膜病变,主动脉瓣钙化较二尖瓣钙化更为常见,其中二尖瓣钙化最常见部位为二尖瓣后叶瓣环,主动脉瓣最常见钙化部位为主动脉瓣环,偶可见心包钙化、下腔静脉瓣钙化,一般不合并心包积液;40%~70%患者合并二尖瓣反流、三尖瓣反流或主动脉瓣反流。Braun等[34]研究证实,超过50%的透析患者存在心脏瓣膜钙化,随访1年后,瓣膜钙化严重程度增加。多种因素可能参与这一过程,如衰老、钙磷代谢紊乱和炎症等[35]。一项纳入140例ESRD患者的研究[36]发现,二尖瓣环钙化与心血管事件发生和心血管死亡密切相关(P=0.010)。另一项研究[37]同样证实瓣膜钙化预测肾移植术后预后风险的临床实用价值较大。二尖瓣反流一定程度反映了二尖瓣复合体在CKD背景下的结构变化:钙化引起瓣环、瓣叶或腱索运动受限以及左心室室壁运动减弱[38-39]。钙磷沉积是心脏瓣膜钙化的独立预测因子[40],因此CKD-MBD治疗可能有助于改善瓣膜钙化。本研究结果显示,中重度二尖瓣钙化、主动脉瓣钙化、主动脉瓣反流、三尖瓣反流患者生存期缩短。

3.5 左心室收缩和舒张功能障碍

本研究中,左心室收缩功能障碍患者比例较低(5.96%),且未发现LVEF对MHD患者远期生存的显著影响,可能与未纳入既往合并心肌梗死、心力衰竭和结构性心脏病患者,造成一定选择性偏倚有关。左心室收缩功能障碍的患病率为15%~28%[41-42],多种因素共同促进其发生[43]。LVEF降低是ESRD患者死亡、发生心血管事件和慢性心力衰竭的预测因素[44]。一项纳入1 254例血透患者的前瞻性研究[45]显示,开始透析前13%的患者LVEF≤50%,随访7年后,LVEF下降且为心血管死亡的独立相关因素。EF<30%和LVEF≥50%血透患者的5年心源性猝死风险分别为60%和28%[46]。左心室收缩功能减退造成的不良影响即使在患者接受肾移植后仍持续存在[47]。目前常用的LVEF测定方法存在一定局限性。面积-长度法或双平面Simpson法所测得的LVEF均反映左心室所有区域缩短的总和,而受损部位未涉及多个节段的区域性室壁运动损伤者LVEF可能不会明显降低,即LVEF对轻微、局限性损伤的诊断灵敏度有限。而一些较新的评价方法,如组织多普勒成像和斑点追踪法,有助于提高亚临床心脏收缩功能障碍的诊断率。

与左心室收缩功能障碍相比,MHD患者左心室舒张功能障碍更常见。由于左心室顺应性降低和松弛功能受损,心室充盈压增加,左心房扩大。左心室舒张功能障碍患者易受到心室容量波动的影响。液体负荷的轻微增加即可能导致肺瘀血,而轻微低血容量即可能导致透析中低血压[48]。左心室舒张功能障碍与ESRD患者弥漫性心肌细胞纤维化有关[49]。心室顺应性降低与年龄、高血压、糖尿病、LVH、冠状动脉疾病和浸润性心肌病有关[50]。血透患者左心室舒张功能障碍的患病率为48%~73%[50]。临床上常采用E/A比值评估舒张功能障碍,本研究中E/A异常者达75.72%。研究[51-54]显示,左心室舒张功能障碍单指标或联合其他心超参数,都可用于预测ESRD或CKD患者不良心血管结局或死亡。目前,尚无研究表明改善左心室舒张功能有助于改善该类患者预后。

本研究存在一定局限性:(1)为样本量偏小的单中心研究;(2)基于研究目的,排除了既往有心脏结构或功能异常病史的患者,心功能与生存预后的远期评价结果存在一定偏倚;(3)由于血透患者透析过程中容量波动大且迅速,而心超径线测量呈容量依赖性,不同的心超采集时间(透析前、透析后或透析长间隔中)均会对结果造成影响。在后续研究中应固定心超采集时间,尽量选择非透析日、患者体质量接近干体质量时进行。

综上所述,心超参数异常在MHD患者中常见,以舒张功能异常更常见,LVH、RWT异常、瓣膜病变均可导致患者生存期缩短,其中主动脉瓣钙化为该类患者预后独立预测因素。因此,对于MHD患者,应加强监测患者心脏结构及功能变化,尤其是舒张功能及钙化情况。此外,本研究表明,经胸心超是评估MHD患者心脏结构和功能的较理想手段。

利益冲突:所有作者声明不存在利益冲突。

参考文献
[1]
National Institutes of Health. 2022 USRDS Annual Data Report[R/OL]. [2023-02-10]. https://usrds-adr.niddk.nih.gov/2022/end-stage-renal-disease.
[2]
MIZUKOSHI K, TAKEUCHI M, NAGATA Y, et al. Normal values of left ventricular mass index assessed by transthoracic three-dimensional echocardiography[J]. J Am Soc Echocardiogr, 2016, 29(1): 51-61. [DOI]
[3]
ZIPES D P, CAMM A J, BORGGREFE M, et al. ACC/AHA/ESC 2006 guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: a report of the American College of Cardiology/American Heart Association Task Force and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Develop guidelines for management of patients with ventricular arrhythmias and the prevention of sudden cardiac death) developed in collaboration with the European Heart Rhythm Association and the Heart Rhythm Society[J]. Europace, 2006, 8(9): 746-837. [DOI]
[4]
National Institutes of Health. 2012 USRDS Annual Data Report[R/OL]. [2023-02-10]. https://www.niddk.nih.gov/about-niddk/strategic-plans-reports/usrds/prior-data-reports/2012.
[5]
TRIPEPI G, BENEDETTO F A, MALLAMACI F, et al. Left atrial volume in end-stage renal disease: a prospective cohort study[J]. J Hypertens, 2006, 24(6): 1173-1180. [DOI]
[6]
PATEL R K, JARDINE A G M, MARK P B, et al. Association of left atrial volume with mortality among ESRD patients with left ventricular hypertrophy referred for kidney transplantation[J]. Am J Kidney Dis, 2010, 55(6): 1088-1096. [DOI]
[7]
FOLEY R N, PARFREY P S, KENT G M, et al. Serial change in echocardiographic parameters and cardiac failure in end-stage renal disease[J]. J Am Soc Nephrol, 2000, 11(5): 912-916. [DOI]
[8]
PARK M, HSU C Y, LI Y, et al. Associations between kidney function and subclinical cardiac abnormalities in CKD[J]. J Am Soc Nephrol, 2012, 23(10): 1725-1734. [DOI]
[9]
FOLEY R N, PARFREY P S, HARNETT J D, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy[J]. Kidney Int, 1995, 47(1): 186-192. [DOI]
[10]
CERASOLA G, NARDI E, PALERMO A, et al. Epidemiology and pathophysiology of left ventricular abnormalities in chronic kidney disease: a review[J]. J Nephrol, 2011, 24(1): 1-10.
[11]
LONDON G M. Left ventricular alterations and end-stage renal disease[J]. Nephrol Dial Transplant, 2002, 17(suppl_1): 29-36. [DOI]
[12]
GLASSOCK R J, PECOITS-FILHO R, BARBERATO S H. Left ventricular mass in chronic kidney disease and ESRD[J]. Clin J Am Soc Nephrol, 2009, 4(Suppl 1): S79-S91.
[13]
STERN A B, KLEMMER P J. High-output heart failure secondary to arteriovenous fistula[J]. Hemodial Int, 2011, 15(1): 104-107. [DOI]
[14]
OKUMURA K, IO H, MATSUMOTO M, et al. Predictive factors associated with change rates of LV hypertrophy and renal dysfunction in CKD patients[J]. Clin Nephrol, 2013, 79(1): 7-14. [DOI]
[15]
AGARWAL R, NISSENSON A R, BATLLE D, et al. Prevalence, treatment, and control of hypertension in chronic hemodialysis patients in the United States[J]. Am J Med, 2003, 115(4): 291-297. [DOI]
[16]
GAASCH W H, ZILE M R. Left ventricular structural remodeling in health and disease: with special emphasis on volume, mass, and geometry[J]. J Am Coll Cardiol, 2011, 58(17): 1733-1740. [DOI]
[17]
VERMA A, MERIS A, SKALI H, et al. Prognostic implications of left ventricular mass and geometry following myocardial infarction: the VALIANT (VALsartan in acute myocardial iNfarcTion) Echocardiographic Study[J]. JACC Cardiovasc Imaging, 2008, 1(5): 582-591. [DOI]
[18]
EGUCHI K, ISHIKAWA J, HOSHIDE S, et al. Differential impact of left ventricular mass and relative wall thickness on cardiovascular prognosis in diabetic and nondiabetic hypertensive subjects[J]. Am Heart J, 2007, 154(1): 79. e9-e15. [DOI]
[19]
HASHEM M S, KALASHYAN H, CHOY J, et al. Left ventricular relative wall thickness versus left ventricular mass index in non-cardioembolic stroke patients[J]. Medicine, 2015, 94(20): e872. [DOI]
[20]
FOLEY R N, PARFREY P S, HARNETT J D, et al. The prognostic importance of left ventricular geometry in uremic cardiomyopathy[J]. J Am Soc Nephrol, 1995, 5(12): 2024-2031. [DOI]
[21]
ZOCCALI C, BENEDETTO F A, MALLAMACI F, et al. Prognostic impact of the indexation of left ventricular mass in patients undergoing dialysis[J]. J Am Soc Nephrol, 2001, 12(12): 2768-2774. [DOI]
[22]
PAOLETTI E, SPECCHIA C, DI MAIO G, et al. The worsening of left ventricular hypertrophy is the strongest predictor of sudden cardiac death in haemodialysis patients: a 10 year survey[J]. Nephrol Dial Transplant, 2004, 19(7): 1829-1834. [DOI]
[23]
LEESON P, MITCHELL A, BECHER H. Echocardiography[M]. 1st ed. New York: Oxford University Press, 2007: 172-173;178-179.
[24]
MCMAHON L P, ROGER S D, LEVIN A. Development, prevention, and potential reversal of left ventricular hypertrophy in chronic kidney disease[J]. J Am Soc Nephrol, 2004, 15(6): 1640-1647. [DOI]
[25]
CHAN C T, GREENE T, CHERTOW G M, et al. Determinants of left ventricular mass in patients on hemodialysis: frequent Hemodialysis Network (FHN) Trials[J]. Circ Cardiovasc Imaging, 2012, 5(2): 251-261. [DOI]
[26]
SUSANTITAPHONG P, KOULOURIDIS I, BALK E M, et al. Effect of frequent or extended hemodialysis on cardiovascular parameters: a meta-analysis[J]. Am J Kidney Dis, 2012, 59(5): 689-699. [DOI]
[27]
DE LIMA J J G, VIEIRA M L C, VIVIANI L F, et al. Long-term impact of renal transplantation on carotid artery properties and on ventricular hypertrophy in end-stage renal failure patients[J]. Nephrol Dial Transplant, 2002, 17(4): 645-651. [DOI]
[28]
LONDON G M, PANNIER B, GUERIN A P, et al. Alterations of left ventricular hypertrophy in and survival of patients receiving hemodialysis: follow-up of an interventional study[J]. J Am Soc Nephrol, 2001, 12(12): 2759-2767. [DOI]
[29]
NAVANEETHAN S D, ROY J, TAO K, et al. Prevalence, predictors, and outcomes of pulmonary hypertension in CKD[J]. J Am Soc Nephrol, 2016, 27(3): 877-886. [DOI]
[30]
LONDON G M, SAFAR M E, PANNIER B. Aortic aging in ESRD: structural, hemodynamic, and mortality implications[J]. J Am Soc Nephrol, 2016, 27(6): 1837-1846. [DOI]
[31]
MACRAE J M, PANDEYA S, HUMEN D P, et al. Arteriovenous fistula-associated high-output cardiac failure: a review of mechanisms[J]. Am J Kidney Dis, 2004, 43(5): e17-e22.
[32]
NAKHOUL F, YIGLA M, GILMAN R, et al. The pathogenesis of pulmonary hypertension in haemodialysis patients via arterio-venous access[J]. Nephrol Dial Transplant, 2005, 20(8): 1686-1692. [DOI]
[33]
BOLIGNANO D, RASTELLI S, AGARWAL R, et al. Pulmonary hypertension in CKD[J]. Am J Kidney Dis, 2013, 61(4): 612-622. [DOI]
[34]
BRAUN J, OLDENDORF M, MOSHAGE W, et al. Electron beam computed tomography in the evaluation of cardiac calcification in chronic dialysis patients[J]. Am J Kidney Dis, 1996, 27(3): 394-401. [DOI]
[35]
WANG A Y M, WOO J, WANG M, et al. Association of inflammation and malnutrition with cardiac valve calcification in continuous ambulatory peritoneal dialysis patients[J]. J Am Soc Nephrol, 2001, 12(9): 1927-1936. [DOI]
[36]
SHARMA R, PELLERIN D, GAZE D C, et al. Mitral annular calcification predicts mortality and coronary artery disease in end stage renal disease[J]. Atherosclerosis, 2007, 191(2): 348-354. [DOI]
[37]
SHARMA R, CHEMLA E, TOME M, et al. Echocardiography-based score to predict outcome after renal transplantation[J]. Heart, 2007, 93(4): 464-469. [DOI]
[38]
SAMAD Z, SIVAK J A, PHELAN M, et al. Prevalence and outcomes of left-sided valvular heart disease associated with chronic kidney disease[J]. J Am Heart Assoc, 2017, 6(10): e006044. [DOI]
[39]
BELLASI A, FERRAMOSCA E, RATTI C, et al. Cardiac valve calcification is a marker of vascular disease in prevalent hemodialysis patients[J]. J Nephrol, 2012, 25(2): 211-218. [DOI]
[40]
RUFINO M, GARCíA S, JIMéNEZ A, et al. Heart valve calcification and calcium x phosphorus product in hemodialysis patients: analysis of optimum values for its prevention[J]. Kidney Int Suppl, 2003, 63(85): S115-S118.
[41]
PARFREY P S, FOLEY R N, HARNETT J D, et al. Outcome and risk factors for left ventricular disorders in chronic uraemia[J]. Nephrol Dial Transplant, 1996, 11(7): 1277-1285. [DOI]
[42]
MCGREGOR E, JARDINE A G, MURRAY L S, et al. Pre-operative echocardiographic abnormalities and adverse outcome following renal transplantation[J]. Nephrol Dial Transplant, 1998, 13(6): 1499-1505. [DOI]
[43]
DYADYK O I, BAGRIY A E, YAROVAYA N F. Disorders of left ventricular structure and function in chronic uremia: how often, why and what to do with it?[J]. Eur J Heart Fail, 1999, 1(4): 327-336. [DOI]
[44]
FOLEY R N, PARFREY P S, KENT G M, et al. Serial change in echocardiographic parameters and cardiac failure in end-stage renal disease[J]. J Am Soc Nephrol, 2000, 11(5): 912-916. [DOI]
[45]
YAMADA S, ISHII H, TAKAHASHI H, et al. Prognostic value of reduced left ventricular ejection fraction at start of hemodialysis therapy on cardiovascular and all-cause mortality in end-stage renal disease patients[J]. Clin J Am Soc Nephrol, 2010, 5(10): 1793-1798. [DOI]
[46]
MANGRUM J, LIN D, DIMARCO J, et al. P2-47: prognostic value of left ventricular systolic function in renal dialysis patients[J]. Heart Rhythm, 2006, 3(5): 154.
[47]
MCGREGOR E, JARDINE A G, MURRAY L S, et al. Pre-operative echocardiographic abnormalities and adverse outcome following renal transplantation[J]. Nephrol Dial Transplant, 1998, 13(6): 1499-1505. [DOI]
[48]
DE SIMONE G. Left ventricular geometry and hypotension in end-stage renal disease: a mechanical perspective[J]. J Am Soc Nephrol, 2003, 14(10): 2421-2427. [DOI]
[49]
AOKI J, IKARI Y, NAKAJIMA H, et al. Clinical and pathologic characteristics of dilated cardiomyopathy in hemodialysis patients[J]. Kidney Int, 2005, 67(1): 333-340. [DOI]
[50]
DE BIE M K, AJMONE MARSAN N, GAASBEEK A, et al. Left ventricular diastolic dysfunction in dialysis patients assessed by novel speckle tracking strain rate analysis: prevalence and determinants[J]. Int J Nephrol, 2012, 2012: 963504.
[51]
WANG A Y, WANG M, LAM C W, et al. Left ventricular filling pressure by Doppler echocardiography in patients with end-stage renal disease[J]. Hypertension, 2008, 52(1): 107-114. [DOI]
[52]
SHARMA R, PELLERIN D, GAZE D C, et al. Mitral peak Doppler E-wave to peak mitral annulus velocity ratio is an accurate estimate of left ventricular filling pressure and predicts mortality in end-stage renal disease[J]. J Am Soc Echocardiogr, 2006, 19(3): 266-273. [DOI]
[53]
BARBERATO S H, BUCHARLES S G, SOUSA A M, et al. Prevalence and prognostic impact of diastolic dysfunction in patients with chronic kidney disease on hemodialysis[J]. Arq Bras Cardiol, 2010, 94(4): 457-462.
[54]
RAKHIT D J, ZHANG X H, LEANO R, et al. Prognostic role of subclinical left ventricular abnormalities and impact of transplantation in chronic kidney disease[J]. Am Heart J, 2007, 153(4): 656-664. [DOI]

文章信息

引用本文
聂宇昕, 张沥文, 杨强, 曹学森, 孙敏敏, 丁小强. 维持性血液透析患者超声心动图异常情况及危险因素分析[J]. 中国临床医学, 2023, 30(3): 404-413.
NIE Yu-xing, ZHANG Li-wen, YANG Qiang, CAO Xue-sen, SUN Min-min, DING Xiao-qiang. Echocardiography abnormalities and related risk factors in patients with maintenance hemodialysis[J]. Chinese Journal of Clinical Medicine, 2023, 30(3): 404-413.
通信作者(Corresponding authors).
丁小强, Tel: 021-64041990, E-mail: dingxiaoqiang2015@hotmail.com.
基金项目
国家自然科学基金(81800677)
Foundation item
Supported by National Natural Science Foundation of China (81800677)

工作空间