文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (3): 509-514      DOI: 10.12025/j.issn.1008-6358.2023.20222080
0
2型糖尿病患者糖化白蛋白/糖化血红蛋白比值与动态血糖参数的相关性分析
范翠翠1,2 , 陈弘1 , 李晓牧1     
1. 复旦大学附属中山医院内分泌科,上海 200032;
2. 宿州市第一人民医院内分泌科,宿州 234000
摘要目的: 探讨2型糖尿病(T2DM)患者糖化白蛋白(GA)/糖化血红蛋白(HbA1c)比值与动态血糖监测(CGM)参数间的相关性。方法: 选择2020年1月至2021年12月首次就诊于复旦大学附属中山医院内分泌科的100例T2DM患者,以GA/HbA1c比值三分位数分组。患者入院后佩戴扫描式血糖监测仪,记录其入院后第3~5天的72 h血糖结果,计算平均血糖、平均血糖波动幅度(MAGE)、最高与最低血糖差( ∆BG),以及血糖在目标范围内时间(TIR)、血糖高于目标范围时间(TAR)、血糖低于目标范围时间(TBR)。分析GA/HbA1c比值与动态血糖参数的相关性。结果: 随着GA/HbA1c比值升高,MAGE、空腹血糖(FBG)、∆BG升高,精氨酸激发后C肽峰值降低(P<0.05)。Pearson相关分析或Spearman秩相关分析显示,GA/HbA1c比值与空腹C肽、精氨酸激发后C肽和TIR负相关(P<0.01),与FBG、∆BG、MAGE正相关(P<0.05),与并发症数量无相关性。多元线性回归分析显示,GA/HbA1c比值与MAGE、∆BG、TIR独立相关(P<0.05)。Logistic回归分析显示,GA/HbA1c比值升高是TIR<70%的独立危险因素(OR=6.990,95%CI 2.179~22.423,P<0.01)。结论: GA/HbA1c比值与T2DM患者的残余胰岛β细胞功能相关,与血糖波动参数MAGE、∆BG、TIR独立相关,可作为评估胰岛功能、监测血糖波动的敏感指标。
关键词2型糖尿病    糖化白蛋白/糖化血红蛋白比值    动态血糖监测    血糖在目标范围内时间    
Correlations between GA/HbA1c ratio and parameters of continuous glucose monitoring in patients with type 2 diabetes mellitus
FAN Cui-cui1,2 , CHEN Hong1 , LI Xiao-mu1     
1. Department of Endocrinology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. Department of Endocrinology, Suzhou First People's Hospital, Suzhou 234000, Anhui, China
Abstract: Objective: To explore the relationship between glycated albumin (GA)/glycosylated hemoglobin (HbA1c) ratio and parameters of continuous glucose monitoring (CGM) in patients with type 2 diabetes mellitus (T2DM). Method: A total of 100 patients with T2DM were enrolled, who was admitted to the Department of Endocrinology, Zhongshan Hospital, Fudan University for the first time between January 2020 and December 2021, and were grouped by GA/HbA1c ratio tertiles. Each patient wore a flash scanning continuous glucose meter, and their 72-hour blood glucose values on the 3rd to 5th day after admission were recorded. The average blood glucose, mean amplitude of glycemic excursion (MAGE), the difference between the highest and lowest blood glucose ( ∆BG), time in range (TIR), time above range (TAR), and time below range (TBR) were calculated. The correlations of GA/HbA1c ratio and CGM parameters were analyzed. Results: With the increase of GA/HbA1c ratio, MAGE, fasting blood glucose (FBG), and ∆BG increased, the peak value of post-arginine C-peptide decreased (P < 0.05). Pearson or Spearman rank correlation analyses showed that GA/HbA1c ratio was negatively correlated with fasting C-peptide, post-arginine C-peptide and TIR (P < 0.01), while it was positively correlated with FBG, ∆BG, and MAGE (P < 0.05). No correlation was found between GA/HbA1c ratio and the number of complications. Multiple linear regression analysis showed that GA/HbA1c ratio was independently correlated with MAGE, ∆BG and TIR (P < 0.05). Logistic regression analysis showed that GA/HbA1c ratio was independently correlated with targeted TIR (OR=6.990, 95% CI 2.179-22.423, P < 0.01). Conclusion: The GA/HbA1c ratio is related to the residual islet β-cell function in T2DM patients, and is independently related to MAGE, ∆BG and TIR and could be used as an indicator for glucose control.
Key words: type 2 diabetes mellitus    GA/HbA1c ratio    continuous glucose monitoring    time in range    

2型糖尿病(type 2 diabetes mellitus,T2DM)患者如果长期血糖控制不佳可引起大血管和微血管的慢性并发症。血糖波动与慢性并发症的发生风险增加有关。血糖监测是糖尿病管理的重要环节。糖化血红蛋白(glycosylated hemoglobin,HbA1c)和糖化白蛋白(glycated albumin,GA)是目前常用的血糖监测指标,分别代表检测前2~3个月和2~3周的平均血糖水平[1-2],但均难以反映血糖波动。动态血糖监测(continuous glucose monitoring,CGM)技术可通过感应皮下组织间液的葡萄糖浓度,提供连续的全天血糖信息[3-4]。虽然可以全面反映血糖波动,但CGM仪器价格昂贵,佩戴时间有限,目前尚未普及。因此,目前仍缺乏简便易行的血糖波动监测指标。

GA/HbA1c比值可作为显示餐后高血糖或血糖波动的参考指标[5-6],能反映1型糖尿病(T1DM)患者的血糖波动,较CGM更方便[7]。GA/HbA1c比值升高提示患者C肽水平降低,对T2DM长期血糖波动有一定预测价值[8]。课题组前期研究[9]发现,GA/HbA1c比值与T1DM患者的血糖波动幅度相关。本研究旨在分析GA/HbA1c比值与T2DM患者动态血糖参数之间的相关性,进一步评估GA/HbA1c比值对T2DM患者血糖波动的监测价值。

1 资料与方法 1.1 研究对象

选择复旦大学附属中山医院内分泌科2020年1月至2021年12月收治的100例T2DM住院患者。纳入标准:(1)符合2022年美国糖尿病协会糖尿病诊断标准[1];(2)佩戴雅培辅理善瞬感扫描式血糖仪(Libre H)。排除标准: (1)病史资料及血糖监测数据不完整;(2)同时伴有糖尿病急性并发症,或合并急性心脑血管疾病;(3)存在严重的心、肝、肾功能不全,甲状腺功能减退,恶性肿瘤;(4)妊娠或哺乳期;(5)意识不清、语言表达不清、不合作及患有精神疾病;(6)贫血、低蛋白血症患者;(7)近3个月患有其他影响糖代谢的疾病或使用糖皮质激素等免疫抑制药物。本研究获得复旦大学附属中山医院伦理委员会批准[B2020-201(2)],所有患者均知情且签署知情同意书。

1.2 临床及实验室指标

收集患者的年龄、性别、血压、体质量、身高、体质量指数(BMI),糖尿病病程、慢性并发症数量。慢性并发症包括糖尿病心血管病变、糖尿病脑血管病变、糖尿病下肢血管病变、糖尿病肾病、糖尿病视网膜病变、糖尿病神经病变、糖尿病足。用BIO-RAD检测仪通过高压液相离子交换层析法检测HbA1c;用日立全自动生化仪通过酶法检测GA、空腹血糖(fasting blood glucose,FBG);用Beckman自动生化检测仪检测丙氨酸氨基转移酶(alanine aminotransferase,ALT)、天冬氨酸氨基转移酶(aspartate aminotransferase,AST)、白蛋白(albumin,Alb)、γ-谷氨酰转肽酶(γ-glutamyltransferase,GGT)、总胆固醇(total cholesterol,TC)、血肌酐(serum creatinine,sCr)。胰岛β细胞功能评定:用罗氏全自动免疫分析仪通过电化学发光法检测空腹及精氨酸激发后C肽水平;精氨酸激发后C肽水平于空腹静脉注射25%盐酸精氨酸20 mL后2 min、4 min、6 min采血检测,取其峰值。按照基线GA/HbA1c比值三分位数分组。

1.3 CGM参数获取

每例患者入院即佩戴雅培辅理善瞬感扫描式血糖仪。告知患者避免压迫传感器,远离强磁场,浸水不超过30 min。该扫描式葡萄糖监测系统每15 min自动获取1次葡萄糖数据并存储,每天记录96次,可连续监测14 d。由于佩戴第1天读数可能偏低,截取患者佩戴血糖仪后第3~5天的72 h数值,共获取288个血糖值。以此计算出平均血糖、平均血糖波动幅度(mean amplitude of glycemic excursion,MAGE)、最高与最低血糖差值(∆BG)。当1次血糖波动的高值和低值之差大于1个血糖标准差时认为是有效的血糖波动。目标葡萄糖设定为3.9~10.0 mmol/L。血糖在目标范围内时间(time in range,TIR)定义为24 h内葡萄糖在目标范围内时间或其所占百分比,取72 h内均值;血糖低于目标范围时间(time below range,TBR)指葡萄糖<3.9 mmol/L的时间所占24 h百分比;血糖高于目标范围时间(time above range,TAR)指葡萄糖>10.0 mmol/L的时间所占24 h百分比。

1.4 统计学处理

采用SPSS 17.0进行统计分析。非正态分布计量资料以MP25, P75)表示,两组间比较采用Mann-Whiteny U检验,3组间比较采用Kruskal-Wallis H检验。正态分布的计量资料以x±s表示,两组间比较采用独立样本t检验,3组间比较采用单因素方差分析。计数资料以n(%)表示,两组间比较采用χ2检验。采用Pearson相关分析或Spearman秩相关分析及多元线性逐步回归法分析GA、HbA1c、GA/HbA1c比值与各CGM参数之间的相关性;采用logistic回归分析GA、HbA1c、GA/HbA1c比值与TIR的关系。检验水准(α)为0.05。

2 结果 2.1 患者基本情况及CGM参数变化

100例T2DM患者中,男性54例、女性48例,年龄38~80岁,平均年龄(60.4±11.8)岁,平均BMI(26.10±4.23)kg/m2;GA/HbA1c比值0.72~4.79,平均2.73±0.55。按照基线GA/HbA1c比值三分位分为<2.47组(T1组,n=33)、2.47~2.84组(T2组,n=33)、>2.84组(T3组,n=34)。结果(表 1)显示:3组患者的性别构成、糖尿病病程、并发症数量、血压、Alb、TC、sCr差异均无统计学意义;T1组的年龄小于T2组和T3组(P<0.05)。

表 1 GA/HbA1c三分位分组患者基本临床特征及CGM参数比较
  指标 T1组(<2.47, n=33) T2组(2.47~2.84, n=33) T3组(>2.84, n=34) P
男性n(%) 18(54.5) 19(57.6) 21(61.8) 0.78
年龄/岁 54.73±13.57 62.64±9.52* 63.74±10.26* <0.01
BMI/(kg·m-2) 27.11±4.56 26.47±3.97* 24.77±3.90* <0.05
糖尿病病程/年 7.00(1.00, 12.00) 10.00(1.50, 13.50) 10.00(2.00, 18.50) 0.344
并发症数量 1.09±1.07 1.76±1.06 1.56±1.33 0.117
收缩压/mmHg 143.70±20.69 144.03±21.94 142.18±19.02 0.795
舒张压/mmHg 79.30±9.89 77.39±10.24 77.38±11.49 0.454
Hb/(g·L-1) 133.91±11.17 132.03±15.44 132.76±11.08 0.612
Alb/(g·L-1) 42.00(40.00, 45.00) 40.00(37.50, 43.00) 39.00(38.00, 42.25) 0.214
sCr/(μmol·L-1) 70.36±24.14 77.88±25.02 73.56±19.66 0.612
TC/(mmol·L-1) 4.26(3.39, 5.31) 4.53(4.15, 5.30) 4.00(3.29, 4.90) 0.937
FBG/(mmol·L-1) 6.78±2.47 8.14±3.05 10.13±4.10* <0.01
空腹C肽/(ng·mL-1) 2.20(1.27, 2.85) 1.92(1.23, 2.53)* 1.43(0.89, 2.04) * 0.069
激发后C肽峰值/(ng·mL-1) 4.42(2.69, 5.79) 2.98(2.19, 4.52) * 2.33(1.56, 3.56) * <0.05
平均血糖/ (mmol·L-1) 6.96(5.84, 7.78) 7.31(6.55, 8.63) 7.36(6.12, 8.64) 0.081
CGM参数
  ∆BG/(mmol·L-1) 9.28±2.63 9.30±2.39 10.66±3.23 <0.01
  MAGE/(mmol·L-1) 4.26±1.57 4.46±1.20 4.87±1.65 <0.01
  TIR/% 87.87±9.51 84.22±10.06* 73.23±15.24* <0.01
BMI:体质量指数;Hb:血红蛋白;Alb:白蛋白;sCr:血肌酐;TC:总胆固醇;FBG:空腹血糖;CGM:动态血糖监测;∆BG:最高与最低血糖差;MAGE:平均血糖波动幅度;TIR:血糖在目标范围内时间。*P<0.05与T1组相比;△P<0.05与T2组相比。

随GA/HbA1c比值升高,患者的FBG、∆BG、MAGE增高(P<0.05);T3组FBG明显高于T1组和T2组。随GA/HbA1c比值升高,BMI、精氨酸激发后的C肽峰值下降(P<0.05)。T1组BMI、空腹C肽、精氨酸激发后C肽峰值明显高于T2组和T3组(P<0.05)。T3组TIR明显低于T1组和T2组(P<0.05)。

2.2 GA/HbA1c比值相关因素分析 2.2.1 单因素分析

Pearson相关分析或Spearman秩相关分析(表 2)显示:校正年龄、性别后,GA/HbA1c比值与FBG、∆BG、MAGE、TAR正相关(P<0.05),与空腹C肽、精氨酸激发后C肽峰值负相关(P<0.05)。

表 2 GA/HbA1c比值相关因素分析
  变量 相关性 多元线性逐步回归 多元线性逐步回归b
r P r P r P
FBG 0.425 0.001
空腹C肽 ﹣0.256a 0.01
激发后C肽峰值 ﹣0.342a 0.001
平均血糖 0.181a 0.071
ΔBG 0.325 0.001 1.653 0.001 1.653 0.001
MAGE 0.258 0.01 0.693 0.01 0.693 0.01
并发症数 0.170a 0.092
TIR ﹣0.484 0.001 ﹣11.628 0.001 ﹣11.628 0.001
TAR 0.412a 0.001
TBR ﹣0.024a 0.815
FBG:空腹血糖;∆BG:最高与最低血糖差;MAGE:平均血糖波动幅度;TIR:血糖在目标范围内时间;TAR:血糖高于目标范围时间;TBR:血糖低于目标范围时间。aSpearman秩相关分析,余为Pearson相关分析;多元线性逐步回归以GA、HbA1c、GA/HbA1c为自变量,b控制性别、年龄。
2.2.2 多因素分析

以GA、HbA1c、GA/HbA1c为自变量,以FBG、空腹C肽、激发后C肽峰值、MAGE、∆BG、TIR、TAR、TBR为因变量进行多元线性逐步回归分析,结果(表 2)显示,GA/HbA1c比值与MAGE、∆BG、TIR独立相关,进一步校正年龄、性别后其相关性仍存在(P<0.05)。

2.3 GA/HbA1c比值与TIR的logistic回归分析

以TIR<70%为因变量,以GA、HbA1c、GA/HbA1c比值为自变量,并校正年龄、性别,进行logistic回归分析,结果显示GA/HbA1c比值升高是TIR<70%的独立危险因素(OR=6.990,95%CI 2.179~22.423,P<0.01)。

3 讨论

理想的糖尿病患者血糖控制不仅要求血糖达标,还应尽可能保证血糖稳定[10]。T2DM患者的血糖波动可通过激活氧化应激通路损伤内皮细胞,增加糖尿病并发症风险[11]。心血管疾病是T2DM患者的主要死亡原因[12]。近期研究发现,血糖变异对心血管并发症的发生发展影响明显[13],而该影响独立于HbA1c[14]。因此,血糖管理不仅要求尽早达到和维持最佳HbA1c水平,更希望通过降低餐后高血糖、减少血糖变异,以延长接近正常血糖的时间[15]。既往研究提示GA/HbA1c比值能够反映T1DM[5]和T2DM[16]患者的7点血糖波动程度,胰岛功能越差则该比值越高、血糖波动幅度越大。本研究利用CGM数据,对血糖的评价更全面、准确。

HbA1c作为糖尿病的诊断参数之一,为评价血糖长期控制的“金标准”。英国前瞻性糖尿病研究(UKPDS)[17]发现,HbA1c每下降1%可使T2DM患者糖尿病相关终点风险和糖尿病相关死亡风险降低21%,心肌梗死风险降低14%,微血管并发症风险降低37%。然而,严格的血糖控制并不能改善T2DM主要心血管事件[18]。T2DM患者的HbA1c水平与心血管结局存在U型关系,当HbA1c为7%时心血管事件发生率最低,低于或高于7%时心血管风险均增加[19]。低于7%时心血管风险增加的原因可能是血糖明显降低时,交感神经-肾上腺轴被激活,外周血管阻力增加,心脏后负荷加重,心肌能量及血流动力学受到影响[18]。但是,由于心血管疾病还与餐后高血糖和血糖波动相关,而HbA1c难以反映血糖波动[20],HbA1c在预测大血管疾病方面存在局限性。本研究显示,GA/HbA1c比值与MAGE、∆BG、TIR独立相关,表明该比值可反映T2DM患者的血糖波动,以及血糖达标情况。

GA可反映检测前2~3周的平均血糖水平,较HbA1c对短期内血糖变化更敏感,适用于初发糖尿病、伴有应激或血糖波动大患者的短期血糖监测。作为糖尿病并发症的监测指标,GA升高还可提示动脉粥样硬化[21]。但GA受到白蛋白代谢速率的影响[22]。HbA1c和GA的半衰期分别为36 d和14 d[23],而GA/HbA1c比值的半衰期为9 d[24]。因此GA/HbA1c比值能反映较GA周期更短的血糖波动。

血糖波动是独立于HbA1c外的重要血糖控制评价指标。CGM在评价血糖波动方面较传统血糖监测有明显优势。CGM有助于发现传统方法不易监测到的血糖变化,以及血糖的昼夜变化规律和波动原因[25-26]。MAGE是评价血糖波动的CGM“金标准”,其正常参考值<3.9 mmol/L[26]。MAGE与急性心肌梗死事件再发显著相关[27]。然而由于CGM耗材较贵,MAGE的计算繁琐,其日常应用受限。本研究中,GA/HbA1c比值与T2DM患者的MAGE、∆BG正相关,说明GA/HbA1c比值越大,血糖波动幅度越大,因此在无法进行CGM的患者中,可用GA/HbA1c比值评估血糖变异。

TIR为评估血糖波动的新指标,可通过CGM或每日7次血糖监测计算获得。TIR与糖尿病微血管并发症显著相关[28],是其独立影响因素[29]。此外,TIR还与T2DM患者心血管死亡及全因死亡相关[30]。因此,2019年发布的TIR国际共识[31]推荐T2DM的TIR应大于70%。但应根据病情个体化,同时关注血糖的波动[32]。本研究中,GA/HbA1c与空腹C肽、精氨酸激发后C肽峰值、TIR负相关(P<0.05),且与TIR<70%独立相关(P<0.01),表明随着GA/HbA1c比值升高,患者残存的胰岛β细胞功能下降,血糖波动幅度增大,TIR缩短。然而,GA/HbA1c比值也有一定局限性。本研究中,GA/HbA1c比值与TBR无明显相关性,提示GA/HbA1c比值对低血糖不敏感。因此,CGM和传统血糖监测仍具有不可替代的优势。

本研究为单中心回顾性研究,样本量较小,混杂因素中仅控制了年龄和性别,而住院患者常合并复杂疾病,研究结果可能存在偏倚。其次,本研究仅观察了14 d血糖波动,未能证明基线GA/HbA1c比值与长期血糖波动的关系。因此,需要更多大样本前瞻性研究验证GA/HbA1c比值与T2DM长期血糖波动的关系。

综上所述,GA/HbA1c比值与T2DM患者C肽水平和血糖波动相关,是TIR<70%的独立危险因素,可作为T2DM患者的胰岛功能和血糖波动的敏感指标。该指标检测简便,值得进一步探讨其评估T2DM患者血糖波动及达标情况的价值。

利益冲突:所有作者声明不存在利益冲突。

参考文献
[1]
No authors listed. Addendum. 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2021[J]. Diabetes Care, 2021, 44(9): 2182. [DOI]
[2]
GAN T, LIAO B Y, XU G S. The clinical usefulness of glycated albumin in patients with diabetes and chronic kidney disease: progress and challenges[J]. J Diabetes Complications, 2018, 32(9): 876-884. [DOI]
[3]
BAILEY T S, AHMANN A, BRAZG R, et al. Accuracy and acceptability of the 6-day Enlite continuous subcutaneous glucose sensor[J]. Diabetes Technol Ther, 2014, 16(5): 277-283. [DOI]
[4]
PETRIE J R, PETERS A L, BERGENSTAL R M, et al. Improving the clinical value and utility of CGM systems: issues and recommendations: a joint statement of the European association for the study of diabetes and the American diabetes association diabetes technology working group[J]. Diabetes Care, 2017, 40(12): 1614-1621. [DOI]
[5]
MATSUMOTO H, MURASE-MISHIBA Y, YAMAMOTO N, et al. Glycated albumin to glycated hemoglobin ratio is a sensitive indicator of blood glucose variability in patients with fulminant type 1 diabetes[J]. Intern Med, 2012, 51(11): 1315-1321. [DOI]
[6]
OGAWA A, HAYASHI A, KISHIHARA E, et al. New indices for predicting glycaemic variability[J]. PLoS One, 2012, 7(9): e46517. [DOI]
[7]
SAISHO Y, TANAKA K, ABE T, et al. Glycated albumin to glycated hemoglobin ratio reflects postprandial glucose excursion and relates to beta cell function in both type 1 and type 2 diabetes[J]. Diabetol Int, 2011, 2(3): 146-153. [DOI]
[8]
SAISHO Y, TANAKA K, ABE T, et al. Lower beta cell function relates to sustained higher glycated albumin to glycated hemoglobin ratio in Japanese patients with type 2 diabetes[J]. Endocr J, 2014, 61(2): 149-157. [DOI]
[9]
王柏荣, 徐晶, 李晓牧. 1型糖尿病患者糖化白蛋白/HbA1C比值与血糖波动幅度及长期血糖控制的相关研究[J]. 中华内分泌代谢杂志, 2020, 36(12): 1027-1031.
WANG B R, XU J, LI X M. Correlation study on glycated albumin to glycated hemoglobin ratio and amplitude of glucose excursions and long-term glycemic control in type 1 diabetic patients[J]. Chin J Endocrinol Metab, 2020, 36(12): 1027-1031.
[10]
KOVATCHEV B, COBELLI C. Glucose variability: timing, risk analysis, and relationship to hypoglycemia in diabetes[J]. Diabetes Care, 2016, 39(4): 502-510. [DOI]
[11]
ŠKRHA J, ŠOUPAL J, ŠKRHA J JR, et al. Glucose variability, HbA1c and microvascular complications[J]. Rev Endocr Metab Disord, 2016, 17(1): 103-110. [DOI]
[12]
EINARSON T R, ACS A, LUDWIG C, et al. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017[J]. Cardiovasc Diabetol, 2018, 17(1): 83. [DOI]
[13]
SATO M, INAISHI J, SAISHO Y, et al. Association of visit-to-visit glycemic variability with risk of cardiovascular diseases in high-risk Japanese patients with type 2 diabetes: a subanalysis of the EMPATHY trial[J]. J Diabetes Investig, 2021, 12(12): 2190-2196. [DOI]
[14]
MARTINEZ M, SANTAMARINA J, PAVESI A, et al. Glycemic variability and cardiovascular disease in patients with type 2 diabetes[J]. BMJ Open Diabetes Res Care, 2021, 9(1): e002032. [DOI]
[15]
CERIELLO A, PRATTICHIZZO F, PHILLIP M, et al. Glycaemic management in diabetes: old and new approaches[J]. Lancet Diabetes Endocrinol, 2022, 10(1): 75-84. [DOI]
[16]
WANG B R, YAO J T, ZHENG H, et al. Association of glycated albumin/glycosylated hemoglobin ratio with blood glucose fluctuation and long-term blood glucose control in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr Obes, 2021, 14: 1809-1815. [DOI]
[17]
STRATTON I M, ADLER A I, NEIL H A, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study[J]. BMJ, 2000, 321(7258): 405-412. [DOI]
[18]
DUCKWORTH W, ABRAIRA C, MORITZ T, et al. Glucose control and vascular complications in veterans with type 2 diabetes[J]. N Engl J Med, 2009, 360(2): 129-139. [DOI]
[19]
MCALISTER F A, ZHENG Y G, WESTERHOUT C M, et al. Association between glycated haemoglobin levels and cardiovascular outcomes in patients with type 2 diabetes and cardiovascular disease: a secondary analysis of the TECOS randomized clinical trial[J]. Eur J Heart Fail, 2020, 22(11): 2026-2034. [DOI]
[20]
QASEEM A, WILT T J, KANSAGARA D, et al. Hemoglobin A1c targets for glycemic control with pharmacologic therapy for nonpregnant adults with type 2 diabetes mellitus: a guidance statement update from the American college of physicians[J]. Ann Intern Med, 2018, 168(8): 569-576. [DOI]
[21]
KOGA M. Glycated albumin; clinical usefulness[J]. Clin Chim Acta, 2014, 433: 96-104. [DOI]
[22]
HE X X, MO Y F, MA X J, et al. Associations of body mass index with glycated albumin and glycated albumin/glycated hemoglobin A1c ratio in Chinese diabetic and non-diabetic populations[J]. Clin Chim Acta, 2018, 484: 117-121. [DOI]
[23]
KOGA M, SUZUKI S, MATSUO K, et al. Calculation of HbA1c and glycated albumin from serially measured self-monitored blood glucose in patients with type 1 diabetes mellitus[J]. Clin Chim Acta, 2013, 425: 188-191. [DOI]
[24]
KOGA M, INADA S, NAKAO T, et al. The glycated albumin (GA) to HbA1c ratio reflects shorter-term glycemic control than GA: analysis of patients with fulminant type 1 diabetes[J]. J Clin Lab Anal, 2017, 31(1): e22023. [DOI]
[25]
VISSER M M, CHARLEER S, FIEUWS S, et al. Comparing real-time and intermittently scanned continuous glucose monitoring in adults with type 1 diabetes (ALERTT1): a 6-month, prospective, multicentre, randomised controlled trial[J]. Lancet, 2021, 397(10291): 2275-2283. [DOI]
[26]
DANNE T, NIMRI R, BATTELINO T, et al. International consensus on use of continuous glucose monitoring[J]. Diabetes Care, 2017, 40(12): 1631-1640. [DOI]
[27]
SU G, MI S H, TAO H, et al. Impact of admission glycemic variability, glucose, and glycosylated hemoglobin on major adverse cardiac events after acute myocardial infarction[J]. Diabetes Care, 2013, 36(4): 1026-1032. [DOI]
[28]
BECK R W, BERGENSTAL R M, RIDDLESWORTH T D, et al. Validation of time in range as an outcome measure for diabetes clinical trials[J]. Diabetes Care, 2019, 42(3): 400-405. [DOI]
[29]
EL MALAHI A, VAN ELSEN M, CHARLEER S, et al. Relationship between time in range, glycemic variability, HbA1c, and complications in adults with type 1 diabetes mellitus[J]. J Clin Endocrinol Metab, 2022, 107(2): e570-e581. [DOI]
[30]
LU J Y, WANG C F, SHEN Y, et al. Time in range in relation to all-cause and cardiovascular mortality in patients with type 2 diabetes: a prospective cohort study[J]. Diabetes Care, 2021, 44(2): 549-555. [DOI]
[31]
BATTELINO T, DANNE T, BERGENSTAL R M, et al. Clinical targets for continuous glucose monitoring data interpretation: recommendations from the international consensus on time in range[J]. Diabetes Care, 2019, 42(8): 1593-1603. [DOI]
[32]
LU J Y, MA X J, ZHANG L, et al. Glycemic variability modifies the relationship between time in range and hemoglobin A1c estimated from continuous glucose monitoring: a preliminary study[J]. Diabetes Res Clin Pract, 2020, 161: 108032. [DOI]

文章信息

引用本文
范翠翠, 陈弘, 李晓牧. 2型糖尿病患者糖化白蛋白/糖化血红蛋白比值与动态血糖参数的相关性分析[J]. 中国临床医学, 2023, 30(3): 509-514.
FAN Cui-cui, CHEN Hong, LI Xiao-mu. Correlations between GA/HbA1c ratio and parameters of continuous glucose monitoring in patients with type 2 diabetes mellitus[J]. Chinese Journal of Clinical Medicine, 2023, 30(3): 509-514.
通信作者(Corresponding authors).
陈弘, Tel: 021-64041990,E-mail:chen.hong1@zs-hospital.sh.cn.

工作空间