文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (3): 534-540      DOI: 10.12025/j.issn.1008-6358.2022.20220417
0
转甲状腺素蛋白心脏淀粉样变诊断的研究进展
孟芳民1,2 , 周年伟1,2 , 潘翠珍1,2     
1. 上海市影像医学研究所,上海 200032;
2. 复旦大学附属中山医院心超室,上海 200032
摘要:转甲状腺素蛋白心脏淀粉样变(transthyretin cardiac amyloidosis, ATTR-CA)是由转甲状腺素蛋白沉积于心肌间质,导致心力衰竭、心房颤动、传导阻滞等临床表现的限制型心肌病。其临床表现多样且非特异,故常误诊和漏诊。随着相关研究的深入和技术的发展,心电图、超声心动图、心脏磁共振、放射性同位素显像等多模态影像技术可为该病的诊断提供更多有效信息;基因检测在临床上可用于区分具体亚型。虽然该病整体预后不佳,但随着对发病机制的深入研究,有效治疗方法不断出现且治疗效果越来越好。早期识别和早期诊断对该病治疗至关重要。本文重点介绍ATTR-CA的最新诊断研究进展。
关键词淀粉样变性    转甲状腺素蛋白心脏淀粉样变    超声心动图    基因检测    
The progress in the diagnosis of transthyretin cardiac amyloidosis
MENG Fang-min1,2 , ZHOU Nian-wei1,2 , PAN Cui-zhen1,2     
1. Shanghai Institute of Medical Imaging, Shanghai 200032, China;
2. Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Abstract: Transthyretin cardiac amyloidosis (ATTR-CA) is a restrictive cardiomyopathy in which transthyretin is deposited in the myocardial interstitium, resulting in heart failure, atrial fibrillation, and conduction block. Its clinical manifestations are diverse and non-specific, and misdiagnosis and missed diagnosis often occurr. With the development of relevant research and technology, multimodality imaging techniques such as electrocardiogram, echocardiography, cardiac magnetic resonance, radionuclide imaging could provide more valid information for its diagnosis. Genetic testing is clinically used to distinguish its subtypes. Although the overall prognosis of the disease is poor, with the continuous research on its pathogenesis, effective treatment methods have been developed and the therapeutic efficacy is getting better and better.  Early recognition and diagnosis were essential for treatment of the disease. This review focused on the latest advances in diagnosis of ATTR-CA.
Key words: cardiac amyloidosis    transthyretin cardiac amyloidosis    echocardiography    genetic test    

心脏淀粉样变(cardiac amyloidosis,CA)是由淀粉样蛋白(细胞外错误折叠的蛋白质)沉积于心肌间质,导致心肌僵硬度增加、心室顺应性下降、心室充盈受损,以心力衰竭、心律失常为主要表现的临床综合征[1-3]。免疫球蛋白轻链(immunoglobulin light chain, AL)、转甲状腺素蛋白(transthyretin,TTR)、血清淀粉样蛋白A、血清载脂蛋白A1等[4-5]均可导致CA。根据沉积的淀粉样蛋白类型的不同,可将CA分为免疫球蛋白轻链型(AL-CA)、转甲状腺素蛋白型(ATTR-CA)、血清淀粉样蛋白A型(AA-CA)型等[1, 5]。其中,AL-CA型和ATTR-CA型占98%以上[6],本文重点介绍ATTR-CA。

1 ATTR-CA发病率及预后

TTR又称前白蛋白,主要在肝脏中产生,是一种转运甲状腺素和视黄醇结合蛋白的四聚体,具有解离成单体的能力,且TTR单体具有淀粉样变特性[1]。根据TTR基因有无突变, ATTR-CA分为遗传型(hereditary ATTR, ATTRv)或突变型(mutant ATTR, ATTRm)和野生型(wild-type, ATTRwt)两类[7]。ATTR-CA患者有明显的性别和年龄差异,如:心肌受累在老年男性中更为常见且表型更为严重[8];ATTRwt-CA在男性发病率更高,发病年龄更早[9],60岁以上男性尤为好发[10]。ATTRm-CA为常染色体显性遗传,目前已发现150多种突变基因,每种突变都有不同的临床表型和外显率。目前已报道的突变中,最常见的是Val122Ile、Thr60Ala和Val30Met这3种突变[11]。全球最常见的ATTRm突变是Val122Ile,在美国黑人人群中最常见,多见于非洲和加勒比海后裔人群[12-13];Val30Met可导致家族性自主神经病变Ⅰ型,目前主要在欧洲人群中发现。ATTR-CA具体的患病率和发病率尚不明确,存在地区差异,这可能与各地区对疾病的认识以及医疗检测水平不同有关。ATTR-CA患者预后不佳。ATTRwt-CA患者中位生存期为确诊后58个月[14];ATTRm-CA患者生存期取决于突变基因的类型[15],其中Val122Ile突变型患者中位生存期仅为诊断后36个月[14, 16],Thr60Ala突变型患者中位生存期 > 60个月[14]

2 临床表现

ATTR-CA临床表现多样,且与其他心肌病变表现相似,无特异性,常难以鉴别。ATTRwt-CA患者以心脏表现为主,ATTRm-CA患者心外表现更为常见。心脏受累表现为心力衰竭、心律失常。最常见的心力衰竭症状包括劳力性呼吸困难、阵发性夜间呼吸困难、端坐呼吸、疲劳、运动不耐受和外周水肿,同时可合并左室重构。ATTR-CA患者通常左室射血分数(left ventricular ejection fraction,LVEF)早期正常,晚期才下降,因此常被误诊为射血分数保留性心衰(heart failure with preserved ejection fraction, HFpEF)[7]。尽管LVEF得到保留,但左心室每搏量可能严重减少,因此患者容易出现晕厥和心源性猝死。心律失常则常表现为房颤或房扑,一项研究[17]显示ATTRwt-CA患者房颤比例可高达88%,此外可见室性心律失常及传导阻滞。ATTR-CA患者由于内皮功能障碍和房颤等原因,易发生心内血栓和全身栓塞[17-18]。老年ATTR-CA患者可以同时合并主动脉瓣狭窄[19]。一项研究[20]表明,接受经导管主动脉瓣置换术(transcatheter aortic valve implantation,TAVI)的患者中约13%合并ATTRwt-CA;另一项队列研究[21]结果显示,TAVI术后患者的ATTR-CA患病率为16%。

心外表现主要由淀粉样蛋白沉积于全身各个器官引起的相应症状和体征。肾脏是最常受累的心外器官,超过1/3的ATTRm-CA患者病变累及肾脏[22]。肾脏受累主要表现为肾病综合征和(或)进行性肾功能衰竭。肝脏受累占AL-CA患者的15%~20%;“巨舌症”常在AL-CA患者中出现(15%~25%);玻璃体受累仅见于ATTRm-CA患者[1]。自主神经病变包括胃肠道表现、不明原因的低血压和勃起功能障碍等。一项队列研究[23]显示,ATTRm-CA患者中有82%出现胃肠道症状。累及周围神经的典型表现为双侧腕管综合征[24],该表现较心脏表现约早10年出现[25-26]。ATTRwt-CA患者还可合并自发性肱二头肌肌腱断裂[27]

3 多模态影像学诊断与基因检测

由于ATTR-CA有明显的异质性且常多系统受累,临床早期诊断难度大。随着无创性诊断技术不断发展,ATTR-CA的诊断率明显提高。目前,心电图(electrocardiogram,ECG)和超声心动图是诊断CA的一线手段;心脏磁共振(cardiac magnetic resonance,CMR)可为CA的诊断提供有效信息;放射性同位素显像对ATTR-CA的诊断灵敏度和特异度高;基因检测能鉴别ATTRwt型和ATTRm型。

3.1 ECG

ECG是疑似CA患者重要的首选检查方法。CA患者12导联ECG典型表现为QRS波低电压以及Q波或T波“假性梗死征象”[28-29]。当同时观察到QRS波低电压(每个肢体导联≤5 mm)和假性心肌梗死征象时,CA的诊断特异度为98%,灵敏度为28%[30]。此外,有研究[31]发现,结合aVR的R波波幅与超声心动图获得的相对室壁厚度,在心力衰竭患者中鉴别ATTR-CA和其他病因导致的室间隔增厚具有较高的诊断准确率(98%)。10%~25%的患者会出现左心室肥厚征象[28]。由于淀粉样蛋白沉积浸润心脏的部位不同而导致心律失常发生、发展不同。心律失常表现多样,包括房室传导阻滞、房颤或房扑、慢速心律失常等。24 h动态ECG监测有助于检测阵发性房颤和传导阻滞[32]。大部分患者合并房颤和传导阻滞,传导阻滞可以是ATTR-CA患者的首发表现[3]。以上这些ECG表现尚不能有效鉴别CA亚型。

3.2 常规超声心动图和斑点追踪技术(speckle-tracking echocardiography,STE)

超声心动图是评估心力衰竭和疑似CA患者的主要影像学检查方法[33-34],主要用来观察心脏形态学改变、评估心脏功能[35]。STE应变成像在定量心脏功能方面比常规成像更敏感,可以量化整体和局部心肌形变,并能揭示心脏疾病早期的细微变化。专家共识[36]表明,不明原因的左室壁厚度 > 12 mm和临床怀疑CA患者都需要行超声心动图检查。

CA通常导致弥漫性、对称性的心室壁增厚,但也偶有非对称性心室壁肥厚的案例报道。与ATTRm-CA和AL-CA患者相比,ATTRwt-CA患者的心室壁增厚更明显[37],但心室壁的厚度不能用于亚型鉴别。二维超声心动图的特征性表现:不明原因的左室壁厚度 > 12 mm、相对厚度 > 0.42 mm和右室游离壁厚度 > 5 mm;心肌回声呈磨玻璃样表现;左心室腔大小正常或略小,右心室扩大,双房增大;下腔静脉增宽[35, 38]。淀粉样蛋白浸润会导致房间隔和心脏瓣膜均匀增厚[36]。老年ATTR-CA患者可合并主动脉瓣狭窄。大部分患者存在胸腔积液和心包积液等非特异性表现,存在少量心包积液合并限制性舒张功能障碍时,需与缩窄性心包炎鉴别[39]

CA导致一系列舒张功能障碍,从松弛受损(Ⅰ级舒张功能障碍)、假性正常化(Ⅱ级舒张功能障碍)到限制性充盈(Ⅲ级舒张功能障碍),并随病程的发展,患者舒张功能障碍加重。早期患者存在舒张功能受损,典型的二尖瓣血流图表现为E峰速度降低、A峰速度增加、E/A比值降低、等容舒张时间延长;晚期患者存在限制性充盈表现,如E/A比值增高、E波减速时间短、肺静脉收缩期峰值流速减小等[40]。二尖瓣E/e’ > 14提示左室充盈压升高;三尖瓣E/A > 2.1、三尖瓣E/e’ > 6、肺动脉收缩压(pulmonay artery systolic pressure, PASP)和右心房压(right atrial pressure, RAP)升高(PASP > 35 mmHg,RAP≥10 mmHg)等提示右室舒张功能障碍。心肌收缩分数(每搏量/心肌质量)在预测ATTR-CA患者总存活率方面优于LVEF[41]。三尖瓣环收缩期位移(tricuspid annular plane systolic excursion,TAPSE) < 17 mm和三尖瓣环收缩期峰值速率 < 9.5 cm/s提示右室收缩功能障碍。

左室整体纵向应变(global longitudinal strain,GLS)是目前STE诊断CA的重要指标,在CA患者中通常表现为心尖纵向应变保留、基底段和中间段应变严重受损的“草莓”征,这与肥厚型心肌病的均匀应变分布形成鲜明对比。在左室壁明显肥厚的患者中,室间隔心尖段与基底段纵向峰值应变比 > 2∶1,对CA的诊断具有高灵敏度(88%)和特异度(85%)[35]。EFSR(LVEF/GLS)是诊断CA的新指标[42]。研究[43]显示,EFSR > 4.1%时较常规超声参数具有最高的诊断准确率(曲线下面积为0.95,95%CI 0.89~0.98,P < 0.05)。既往对ATTR-CA的研究[37, 41]主要集中在心室内淀粉样蛋白浸润导致的心室功能和结构变化, 对心房的评估主要集中在心房大小,很少关注心房功能。最近通过左心房STE分析[44]发现,ATTR-CA患者的心房僵硬度增加,心房3个时相的功能均有明显损害(储存功能8.86%、导管功能6.5%、收缩功能4.0%),且心房僵硬度增加与预后独立相关。

3.3 CMR

CMR电影序列可以评估左右心室和左右心房的形态和功能。79%的ATTR-CA患者存在非对称性室间隔肥厚,18%的患者为对称性,13%的患者左心室几何结构正常,常合并右心室肥厚[45]。T1延迟增强序列(late gadolinium enhancement,LGE)和T1 mapping序列可以评估心肌的组织学特征和测量细胞外容积分数(extracellular volume fraction,ECV)。CA的LGE典型表现为心内膜及心肌中层环状钆剂延迟强化。心内膜下LGE常见于AL-CA,透壁LGE常见于ATTR-CA。应用相位敏感反转恢复(PSIR)技术后,LGE比超声心动图或常规CMR功能评估具有更高的特异度和灵敏度[36]。T1 mapping可以定量评估组织T1弛豫时间,最大优点是可通过无对比剂技术(native T1 Mapping)测量心肌固有信号。而注射对比剂后,通过血液与心肌信号变化比值和血细胞压积计算得出ECV[46]。ATTR-CA患者native T1值和ECV显著高于肥厚型心肌病患者,有助于鉴别诊断;ECV还能独立预测ATTR-CA患者的死亡风险[47]。但是CMR不能准确区分AL-CA和ATTR-CA这2种亚型。

3.4 放射性同位素显像

单光子发射计算机断层扫描(single-photon emission computed tomography, SPECT)用于心肌显像时常用显像剂为99m锝-焦磷酸盐(99m Technetium-pyrophosphate, 99mTc-PYP)。99mTc-PYP显像有助于ATTR-CA早期诊断[25, 48]。目前,有2种主要评分系统用于诊断。(1)半定量评分系统:对心肌摄取与肋骨摄取相比,0级为心脏未摄取;1级为心脏摄取低于骨组织;2级为心肌摄取等于骨摄取;3级为心肌摄取大于骨摄取。99mTc-PYP显像心肌摄取≥2级时,对ATTR-CA的诊断灵敏度和特异度分别为92%和95%[49-50]。(2)定量评分系统:将心脏(H)上的ROI区域与对侧肺(CL)ROI区域进行比较。注射显像剂1 h后H/CL摄取比≥1.5及3 h后H/CL摄取比≥1.3具有诊断意义;结合多时段H/CL摄取比可减少假阳性。99mTc-PYP显像假阳性常由AL-CA所致,因此必须与AL-CA的实验室测试相结合进行鉴别诊断。

正电子发射断层扫描(positron emission tomography,PET)主要使用的示踪剂为18F氟代脱氧葡萄糖(18F-fludeoxyglucose, 18F-FDG),可定量评估淀粉样蛋白负荷。PET图像通常与CT或MRI融合应用,比SPECT具有更高的空间分辨率;但18F-FDG既结合TTR也结合AL,故无法区分AL和ATTR这2种亚型。淀粉样蛋白特异性显像剂,如11C-匹兹堡化合物B(PIB)、18F-氟哌啶醇、18F-氟比他班等,可用于CA与其他心脏疾病鉴别。

3.5 多模态影像联合

多模态影像联合可有效提高CA诊断率[51-52]。例如,超声心动图显示左室壁增厚联合12导联ECG上低电压QRS波群是CA的典型表现[35]。对于超声心动图或CMR表现提示为CA的心衰患者,若99mTc-PYP显像中心肌摄取为2级或3级,血清和尿液免疫固定电泳对游离AL定量评估为阴性,则可以在没有组织活检的情况下诊断为ATTR-CA[53]。虽然心脏无创成像技术已取得巨大进步,在CA的早期和准确检测方面取得了实质性进展,但心肌活检仍是诊断CA的金标准。

3.6 基因检测

通过99mTc-PYP显像诊断为ATTR-CA后,仍需采用基因检测确定其亚型为野生型或突变型。全外显子基因测序有助于对ATTRm-CA和ATTRwt-CA进行鉴别[54-55]。由于发病年龄、外显性和临床进展取决于基因突变的类型,因此对等位基因突变的评估尤其建议在有家族史或出现相应临床表现患者中进行[6]。ATTRm-CA表型在不同的突变类型之间差异很大,导致器官选择性、疾病严重程度和患者预后不尽相同。即使在携带相同突变的队列中,其表型和外显率也高度可变[11]。在不完全外显和晚发导致家族史缺失的情况下,仅凭临床检查和组织学技术无法区分ATTRm-CA和ATTRwt-CA,因此确诊为ATTR-CA的患者均应进行基因检测。基因检测对ATTRm-CA患者的预后判定、治疗选择、家族筛查和遗传咨询均有重要意义。

4 治疗 4.1 药物治疗

ATTR-CA对症治疗主要针对心衰、房颤和传导阻滞。临床常用利尿剂控制心衰,首选胺碘酮控制心脏节律[56]。由于患者常发生房颤或房扑,应积极进行抗凝治疗。对因治疗的药物目前仅氯苯唑酸(tafamidis)获批上市。Tafamidis是一种稳定TTR四聚体药物,通过抑制TTR解离成单体而减少淀粉样蛋白产生。研究[57]报道,Tafamidis可以显著降低ATTR-CA患者全因死亡率和因心血管病住院次数。

4.2 手术治疗

对于药物治疗效果不佳的心律失常患者可考虑电复律。符合指征CA患者可植入心脏起搏器。有研究[1]显示,CA患者死亡的主要原因是机械-电活动分离,因此可进行心脏再同步化治疗(CRT)。由于TTR主要在肝脏产生,原位肝移植(orthotopic liver transplantation,OLT)是治疗ATTR-CA的有效方法。OLT能提高ATTRm-CA患者生存率,使其术后20年生存率提高至55.3%[58]

4.3 基因编辑治疗

由于ATTRm-CA为单基因位点突变的遗传性疾病,因此对该病的基因编辑治疗为目前研究热点。最近研究[59]在ATTR-CA合并多神经病变的患者中使用NTLA-2001进行体内基因编辑治疗,结果显示通过靶向敲除TTR突变基因使血清TTR蛋白浓度降低,仅导致轻微不良事件。基因编辑为ATTRm-CA提供了新的治疗方向。

综上所述,目前ATTR-CA研究主要集中于欧美地区,国内对此疾病的认识仍不足,故常出现漏诊、误诊。未来研究方向主要聚焦于早期诊断及改善预后。多模态影像联合能提高ATTR-CA诊断率。基因检测对于该病基因分型及治疗选择具有重要意义。虽然已有不少治疗系统性淀粉样变的药物,但目前国内应用于ATTR-CA的药物仅氯苯唑酸。随着基因编辑治疗ATTRm-CA的研究深入,针对基因的靶向精准治疗有望早日进入临床。

利益冲突:  所有作者均声明不存在利益冲突。

参考文献
[1]
MUCHTAR E, BLAUWET L A, GERTZ M A. Restrictive cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res, 2017, 121(7): 819-837. [DOI]
[2]
RUBERG F L, BERK J L. Transthyretin (TTR) cardiac amyloidosis[J]. Circulation, 2012, 126(10): 1286-1300. [DOI]
[3]
Heart Failure Group of Chinese Society of Cardiology; Editorial Board of Chinese Journal of Cardiology. Chinese expert consensus on the diagnosis and treatment of transthyretin cardiac amyoidosis[J]. Zhonghua Xin Xue Guan Bing Za Zhi, 2021, 49(4): 324-332.
[4]
BENSON M D, BUXBAUM J N, EISENBERG D S, et al. Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee[J]. Amyloid, 2018, 25(4): 215-219. [DOI]
[5]
MAURER M S, ELLIOTT P, COMENZO R, et al. Addressing common questions encountered in the diagnosis and management of cardiac amyloidosis[J]. Circulation, 2017, 135(14): 1357-1377. [DOI]
[6]
GARCIA-PAVIA P, RAPEZZI C, ADLER Y, et al. Diagnosis and treatment of cardiac amyloidosis. A position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases[J]. Eur J Heart Fail, 2021, 23(4): 512-526. [DOI]
[7]
BISTOLA V, PARISSIS J, FOUKARAKIS E, et al. Practical recommendations for the diagnosis and management of transthyretin cardiac amyloidosis[J]. Heart Fail Rev, 2021, 26(4): 861-879. [DOI]
[8]
CAPONETTI A G, RAPEZZI C, GAGLIARDI C, et al. Sex-related risk of cardiac involvement in hereditary transthyretin amyloidosis: insights from THAOS[J]. JACC Heart Fail, 2021, 9(10): 736-746. [DOI]
[9]
ZAMPIERI M, ARGIRÒ A, ALLINOVI M, et al. Sex-related differences in clinical presentation and all-cause mortality in patients with cardiac transthyretin amyloidosis and light chain amyloidosis[J]. Int J Cardiol, 2022, 351: 71-77. [DOI]
[10]
SAITO Y, NAKAMURA K, ITO H. Molecular mechanisms of cardiac amyloidosis[J]. Int J Mol Sci, 2021, 23(1): 25. [DOI]
[11]
ARNO S, COWGER J. The genetics of cardiac amyloidosis[J]. Heart Fail Rev, 2021.
[12]
BATRA J, ROSENBLUM H, CAPPELLI F, et al. Racial differences in Val122Ile-associated transthyretin cardiac amyloidosis[J]. J Card Fail, 2022, 28(6): 950-959. [DOI]
[13]
DA SILVA-BATISTA J A, MARQUES JR W, OLIVEIRA M, et al. Presence of val30Met and val122ile mutations in a patient with hereditary amyloidosis[J]. J Hum Genet, 2020, 65(8): 711-713. [DOI]
[14]
CHACKO L, MARTONE R, BANDERA F, et al. Echocardiographic phenotype and prognosis in transthyretin cardiac amyloidosis[J]. Eur Heart J, 2020, 41(14): 1439-1447. [DOI]
[15]
RUBERG F L, GROGAN M, HANNA M, et al. Transthyretin amyloid cardiomyopathy: JACC state-of-the-art review[J]. J Am Coll Cardiol, 2019, 73(22): 2872-2891. [DOI]
[16]
LANE T, FONTANA M, MARTINEZ-NAHARRO A, et al. Natural history, quality of life, and outcome in cardiac transthyretin amyloidosis[J]. Circulation, 2019, 140(1): 16-26. [DOI]
[17]
BUKHARI S, BARAKAT A F, EISELE Y S, et al. Prevalence of atrial fibrillation and thromboembolic risk in wild-type transthyretin amyloid cardiomyopathy[J]. Circulation, 2021, 143(13): 1335-1337. [DOI]
[18]
SELVARAJ S, CLAGGETT B, MINAMISAWA M, et al. Atrial fibrillation and ischemic stroke with the amyloidogenic V122I transthyretin variant among black Americans[J]. J Am Coll Cardiol, 2021, 78(1): 89-91. [DOI]
[19]
RAPEZZI C, ARBUSTINI E, CAFORIO A L, et al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases[J]. Eur Heart J, 2013, 34(19): 1448-1458. [DOI]
[20]
GONZÁLEZ-LÓPEZ E, GALLEGO-DELGADO M, GUZZO-MERELLO G, et al. Wild-type transthyretin amyloidosis as a cause of heart failure with preserved ejection fraction[J]. Eur Heart J, 2015, 36(38): 2585-2594. [DOI]
[21]
CASTAÑO A, NAROTSKY D L, HAMID N, et al. Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement[J]. Eur Heart J, 2017, 38(38): 2879-2887. [DOI]
[22]
FERRARO P M, D'AMBROSIO V, DI PAOLANTONIO A, et al. Renal involvement in hereditary transthyretin amyloidosis: an Italian single-centre experience[J]. Brain Sci, 2021, 11(8): 980. [DOI]
[23]
LUIGETTI M, TORTORA A, ROMANO A, et al. Gastrointestinal manifestations in hereditary transthyretin amyloidosis: a single-centre experience[J]. J Gastrointestin Liver Dis, 2020, 29(3): 339-343. [DOI]
[24]
CONNORS L H, SAM F, SKINNER M, et al. Heart failure resulting from age-related cardiac amyloid disease associated with wild-type transthyretin: a prospective, observational cohort study[J]. Circulation, 2016, 133(3): 282-290. [DOI]
[25]
SUGIURA K, KOZUKI H, UEBA H, et al. Tenosynovial and cardiac transthyretin amyloidosis in Japanese patients undergoing carpal tunnel release[J]. Circ Rep, 2021, 3(6): 338-344. [DOI]
[26]
MILANDRI A, FARIOLI A, GAGLIARDI C, et al. Carpal tunnel syndrome in cardiac amyloidosis: implications for early diagnosis and prognostic role across the spectrum of aetiologies[J]. Eur J Heart Fail, 2020, 22(3): 507-515. [DOI]
[27]
GELLER H I, SINGH A, ALEXANDER K M, et al. Association between ruptured distal biceps tendon and wild-type transthyretin cardiac amyloidosis[J]. JAMA, 2017, 318(10): 962-963. [DOI]
[28]
MAURER M S, HANNA M, GROGAN M, et al. Genotype and phenotype of transthyretin cardiac amyloidosis: THAOS (Transthyretin Amyloid Outcome Survey)[J]. J Am Coll Cardiol, 2016, 68(2): 161-172. [DOI]
[29]
CYRILLE N B, GOLDSMITH J, ALVAREZ J, et al. Prevalence and prognostic significance of low QRS voltage among the three main types of cardiac amyloidosis[J]. Am J Cardiol, 2014, 114(7): 1089-1093. [DOI]
[30]
CHENG Z, ZHU K, TIAN Z, et al. The findings of electrocardiography in patients with cardiac amyloidosis[J]. Ann Noninvasive Electrocardiol, 2013, 18(2): 157-162. [DOI]
[31]
LÖFBACKA V, SUHR O B, PILEBRO B, et al. Combining ECG and echocardiography to identify transthyretin cardiac amyloidosis in heart failure[J]. Clin Physiol Funct Imaging, 2021, 41(5): 408-416. [DOI]
[32]
GARCIA-PAVIA P, BENGEL F, BRITO D, et al. Expert consensus on the monitoring of transthyretin amyloid cardiomyopathy[J]. Eur J Heart Fail, 2021, 23(6): 895-905. [DOI]
[33]
ROGINI S, VINTER O, TRBUŠI M, et al. Cardiac amyloidosis detected on imaging of patients with heart failure[J]. Am J Case Rep, 2020, 21: e926290.
[34]
MARTINEZ-NAHARRO A, BAKSI A J, HAWKINS P N, et al. Diagnostic imaging of cardiac amyloidosis[J]. Nat Rev Cardiol, 2020, 17(7): 413-426. [DOI]
[35]
AGRAWAL T, NAGUEH S F. Echocardiographic assessment of cardiac amyloidosis[J]. Heart Fail Rev, 2021.
[36]
DORBALA S, ANDO Y, BOKHARI S, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI Expert Consensus Recommendations for Multimodality Imaging in Cardiac Amyloidosis: part 1 of 2-evidence base and standardized methods of imaging[J]. Circ Cardiovasc Imaging, 2021, 14(7): e000029.
[37]
QUARTA C C, SOLOMON S D, URAIZEE I, et al. Left ventricular structure and function in transthyretin-related versus light-chain cardiac amyloidosis[J]. Circulation, 2014, 129(18): 1840-1849. [DOI]
[38]
MAURER M S, BOKHARI S, DAMY T, et al. Expert consensus recommendations for the suspicion and diagnosis of transthyretin cardiac amyloidosis[J]. Circ Heart Fail, 2019, 12(9): e006075. [DOI]
[39]
HIRSHFELD JR J W, JOHNSTON-COX H. Distinguishing constrictive pericarditis from restrictive cardiomyopathy-an ongoing diagnostic challenge[J]. JAMA Cardiol, 2022, 7(1): 13-14. [DOI]
[40]
KLEIN A L, HATLE L K, BURSTOW D J, et al. Doppler characterization of left ventricular diastolic function in cardiac amyloidosis[J]. J Am Coll Cardiol, 1989, 13(5): 1017-1026. [DOI]
[41]
RUBIN J, STEIDLEY D E, CARLSSON M, et al. Myocardial contraction fraction by M-mode echocardiography is superior to ejection fraction in predicting mortality in transthyretin amyloidosis[J]. J Card Fail, 2018, 24(8): 504-511. [DOI]
[42]
PAGOURELIAS E D, DUCHENNE J, MIREA O, et al. The relation of ejection fraction and global longitudinal strain in amyloidosis: implications for differential diagnosis[J]. JACC Cardiovasc Imaging, 2016, 9(11): 1358-1359. [DOI]
[43]
PAGOURELIAS E D, MIREA O, DUCHENNE J, et al. Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters[J]. Circ Cardiovasc Imaging, 2017, 10(3): e005588.
[44]
BANDERA F, MARTONE R, CHACKO L, et al. Clinical importance of left atrial infiltration in cardiac transthyretin amyloidosis[J]. JACC Cardiovasc Imaging, 2022, 15(1): 17-29. [DOI]
[45]
MARTINEZ-NAHARRO A, TREIBEL T A, ABDEL-GADIR A, et al. Magnetic resonance in transthyretin cardiac amyloidosis[J]. J Am Coll Cardiol, 2017, 70(4): 466-477. [DOI]
[46]
MESSROGHLI D R, MOON J C, FERREIRA V M, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2* and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging (EACVI)[J]. J Cardiovasc Magn Reson, 2017, 19(1): 75. [DOI]
[47]
PAN J A, KERWIN M J, SALERNO M. Native T1 mapping, extracellular volume mapping, and late gadolinium enhancement in cardiac amyloidosis: a meta-analysis[J]. JACC Cardiovasc Imaging, 2020, 13(6): 1299-1310. [DOI]
[48]
TAHARA N, LAIREZ O, ENDO J, et al. (99m) Technetium-pyrophosphate scintigraphy: a practical guide for early diagnosis of transthyretin amyloid cardiomyopathy[J]. ESC Heart Fail, 2022, 9(1): 251-262. [DOI]
[49]
KOIKE H, OKUMURA T, MUROHARA T, et al. Multidisciplinary approaches for transthyretin amyloidosis[J]. Cardiol Ther, 2021, 10(2): 289-311. [DOI]
[50]
TREGLIA G, GLAUDEMANS A, BERTAGNA F, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis[J]. Eur J Nucl Med Mol Imaging, 2018, 45(11): 1945-1955. [DOI]
[51]
HABIB G, BUCCIARELLI-DUCCI C, CAFORIO A L P, et al. Multimodality Imaging in Restrictive Cardiomyopathies: an EACVI expert consensus document in collaboration with the "Working Group on myocardial and pericardial diseases" of the European Society of Cardiology Endorsed by The Indian Academy of Echocardiography[J]. Eur Heart J Cardiovasc Imaging, 2017, 18(10): 1090-121. [DOI]
[52]
KHANNA S, WEN I, BHAT A, et al. The role of multi-modality imaging in the diagnosis of cardiac amyloidosis: a focused update[J]. Front Cardiovasc Med, 2020, 7: 590557. [DOI]
[53]
GILLMORE J D, MAURER M S, FALK R H, et al. Nonbiopsy diagnosis of cardiac transthyretin amyloidosis[J]. Circulation, 2016, 133(24): 2404-2412. [DOI]
[54]
CIMIOTTI D, BUDDE H, HASSOUN R, et al. Genetic restrictive cardiomyopathy: causes and consequences-an integrative approach[J]. Int J Mol Sci, 2021, 22(2): 558. [DOI]
[55]
BROWN E E, LEE Y Z J, HALUSHKA M K, et al. Genetic testing improves identification of transthyretin amyloid (ATTR) subtype in cardiac amyloidosis[J]. Amyloid, 2017, 24(2): 92-95. [DOI]
[56]
FINE N M, DAVIS M K, ANDERSON K, et al. Canadian Cardiovascular Society/Canadian Heart Failure Society Joint Position Statement on the evaluation and management of patients with cardiac amyloidosis[J]. Can J Cardiol, 2020, 36(3): 322-334. [DOI]
[57]
MAURER M S, SCHWARTZ J H, GUNDAPANENI B, et al. Tafamidis treatment for patients with transthyretin amyloid cardiomyopathy[J]. N Engl J Med, 2018, 379(11): 1007-1016. [DOI]
[58]
ERICZON B G, WILCZEK H E, LARSSON M, et al. Liver transplantation for hereditary transthyretin amyloidosis: after 20 years still the best therapeutic alternative?[J]. Transplantation, 2015, 99(9): 1847-1854. [DOI]
[59]
RIM J H, GOPALAPPA R, GEE H Y. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med, 2021, 385(18): 1722.

文章信息

引用本文
孟芳民, 周年伟, 潘翠珍. 转甲状腺素蛋白心脏淀粉样变诊断的研究进展[J]. 中国临床医学, 2023, 30(3): 534-540.
MENG Fang-min, ZHOU Nian-wei, PAN Cui-zhen. The progress in the diagnosis of transthyretin cardiac amyloidosis[J]. Chinese Journal of Clinical Medicine, 2023, 30(3): 534-540.
通信作者(Corresponding authors).
潘翠珍, Tel: 021-64041990, E-mail: pan.cuizhen@zs-hospital.sh.cn.
基金项目
上海市卫生健康委员会科研项目(20194Y0272,202140291)
Foundation item
Supported by Scientific Research Project of Shanghai Health Commission(20194Y0272, 202140291)

工作空间