文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (1): 154-158      DOI: 10.12025/j.issn.1008-6358.2023.20211303
0
基于旋髂浅动脉穿支皮瓣超显微外科技术在肿瘤整形外科中的应用进展
高子煦1 , 高璐2 , 王璐1 , 任明1 , 沈康杰1 , 顾建英1 , 卫传元1     
1. 复旦大学附属中山医院整形外科, 上海 200032;
2. 同济大学附属东方医院特诊部, 上海 200123
摘要:随着显微外科技术的不断进步,超显微外科得到了发展,将手术带入更加微观的层面。肿瘤患者的术后生活质量正成为重要的社会问题,而超显微外科作为一种侵入性较小且功能重建效果良好的肿瘤修复重建技术引起广泛关注。采用超显微外科技术能对直径为0.8 mm或更小的血管、淋巴管和神经进行解剖吻合,因此游离皮瓣可通过任意部位的无名血管进行血管化,进而用以修复缺损,实现真正意义上的微创重建。借助超显微外科技术进行淋巴重建,在肿瘤外科手术后淋巴疾病的预防和治疗中起重要作用。本文就旋髂浅动脉穿支皮瓣超显微外科技术的原理、应用以及其在肿瘤整形外科中的应用价值作一综述。
关键词超显微外科    旋髂浅动脉穿支皮瓣    肿瘤整形外科    
Advances in the application of supermicrosurgery based on superficial circumflex iliac artery perforator flap in oncology plastic surgery
GAO Zi-xu1 , GAO Lu2 , WANG Lu1 , REN Ming1 , SHEN Kang-jie1 , GU Jian-ying1 , WEI Chuan-yuan1     
1. Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. The VIP Department, Shanghai East Hospital, School of Medicine Tongji University, Shanghai 200123, China
Abstract: With the continuous progress of microsurgery technology, the development of supermicrosurgery has made the operation more microscopic. Postoperative quality of life for cancer patients is becoming a major social issue. And as a less invasive tumor repair and reconstruction technology, supermicrosurgery has better functional reconstruction and has attracted widespread attention. Supermicrosurgery can perform anastomosis on blood vessels, lymphatics, and nerves with a 0.8 mm or smaller diameter. Therefore, the free skin flap can use nameless blood vessels from any part of the flap to repair the defect with vascularized tissue and achieve minimally invasive reconstruction trully. Supermicrosurgery for lymphatic reconstruction play an important role in the prevention and treatment of lymphatic diseases after tumor surgery. This article reviews the principle and application of supermicrosurgery based on SCIP flap and its value in oncology plastic surgery.
Key words: supermicrosurgery    superficial circumflex iliac artery perforator flap    oncology plastic surgery    

随着显微重建外科技术的发展,各种皮瓣被应用于肿瘤切除术后缺损的重建。胸大肌皮瓣、胸三角皮瓣等局部皮瓣多用于无显微吻合的修复重建。微血管吻合术的出现,使得游离组织或皮瓣转移开始用于肿瘤缺损的即刻重建[1-4]。肌皮瓣主要由血管、肌肉、脂肪和皮肤组成,如背阔肌肌皮瓣、腹直肌肌皮瓣,在器官再造如乳房重建中起重要作用。尽管游离肌皮瓣能立即重建大面积缺损,但由于常造成主要血管和肌肉的损失,这些皮瓣在供区部位的坏死率很高。而且,由于肌皮瓣引起供区肌肉缺失量较大,进行自然轮廓的美学重建较为困难。

随着显微外科技术和解剖学研究的加深,可保留肌肉的穿支皮瓣得到了进一步发展。腹直肌肌皮瓣被腹壁下动脉穿支(deep inferior epigastric artery perforator, DIEP)皮瓣替代用于乳房再造;股前外侧(anterolateral thigh, ALT)穿支皮瓣已成为头颈部重建皮瓣的一种选择;旋髂浅动脉穿支(superficial circumflex iliac artery perforator, SCIP)皮瓣广泛应用于超显微外科整形重建。穿支皮瓣能减少创伤并更具美观性。而超显微外科的出现使更复杂的显微血管操作成为可能,进而有利于进行功能性和美学重建,同时能避免或减少供区功能障碍的发生[5-8]。超显微外科是新兴的复杂显微外科技术[9],在肿瘤重建手术中发挥重要作用。

1 超显微外科

1997年,Koshima等[5-8]首次提出了超显微外科的概念,后不断完善。超显微外科是一种对直径为0.8 mm或更小的血管、淋巴管和神经进行解剖及吻合的技术[7-8, 10-12]。与传统的游离皮瓣重建不同,超显微外科手术游离皮瓣可使用无名血管而无需损失主要血管及肌肉进行重建(表 1)。通过超显微外科手术,皮肤、脂肪、筋膜、骨骼、肌腱、韧带、肌肉和神经等组织可以联合用于重建复杂缺损。

表 1 超显微外科与传统显微外科对比
    指标 超显微外科 传统显微外科
吻合血管直径/mm ≤0.8 1~2
显微镜放大倍数 50倍 10倍
缝线 12-0 10-0
显微镊 尖端宽0.06 mm 尖端宽1.0 mm
游离皮瓣类型 无名血管 知名血管
侵入性 较小 较大
供区发病率 较低 较高
操作 复杂 简便

显微外科主要对直径为1~2 mm的血管进行吻合,与直视下血管吻合过程相似。与显微手术或直视下血管吻合手术不同,超显微外科吻合的血管较细,不能将镊子插入血管内腔以引导缝合,因此超显微手术侵入性更小,在技术上的要求也更为精细。

2 SCIP皮瓣

SCIP皮瓣是由传统的游离腹股沟皮瓣演变而来,首次由Daniel等[13]报道。SCIP皮瓣以旋髂浅动脉(superficial circumflex iliac artery, SCIA)的浅支和深支为基础,是一种微创皮瓣[14],其供区瘢痕可隐藏在腹股沟皱褶处。近年来,SCIP皮瓣以其设计灵活、皮瓣弹性好、供区位置隐蔽、皮肤延展性好等优点,广泛应用于各类复杂创面的修复。同时,由于穿支血管较细、皮瓣蒂部短小、走行变异较大,对显微解剖及吻合技术提出了更高要求。

3 基于SCIP皮瓣超显微外科技术的应用

基于SCIP的超显微外科整形重建是超显微外科的重要临床应用之一[5, 15]。由于SCIA分支的直径约为0.5 mm,因此需要进行超显微外科手术来转移SCIP皮瓣。通过超显微外科手术,SCIP皮瓣可以应用于各类复杂创面的修复重建。

3.1 头面部和颈部重建

SCIP皮瓣可用于头颈部多部位缺损的重建,包括额部、顶部、枕部、颞部、面部、口腔、颈部及外耳道,具有供区并发症少及重建功能性多的优点[16-17],并可提供大面积软组织以修复面部对称性。对于面部缺损,胸肩峰动脉穿支皮瓣可用于同侧缺损的重建[7]。而当同侧不适用受区吻合血管时,可用对侧血管作为长蒂皮瓣的受体,如基于SCIA深支的皮瓣。肿瘤术后面神经缺损对生活质量有明显影响,应尽可能与软组织重建同时进行,可使用包含血管化神经的嵌合皮瓣[18]

3.2 躯干重建

穿支皮瓣或嵌合皮瓣可用于腹壁、胸壁或盆底等部位的重建,同时可以减少供区功能障碍。SCIP筋膜瓣可作为腹壁和盆底重建的带蒂皮瓣,而胸壁重建时可用带或不带皮岛的游离皮瓣。SCIA深支常用于转移血管化筋膜瓣。阔筋膜张肌肌皮瓣是重建脐部以下腹壁下部缺损最常用的皮瓣,而嵌合的SCIP深筋膜瓣可用于腹壁上部缺损的重建[19]

3.3 乳房再造

DIEP皮瓣是自体组织乳房再造中最常见的皮瓣,其获取创伤小于腹直肌肌皮瓣[20]。其他穿支皮瓣也需要肌间和(或)肌内解剖,包括臀上动脉穿支皮瓣、股深动脉穿支皮瓣、腰动脉穿支皮瓣和SCIP皮瓣。除SCIP皮瓣外,其他皮瓣的蒂相对较短。用于乳房重建时,SCIA的深支和浅支都应包括在SCIP中,以具有足够体积。

3.4 四肢重建

由于四肢含有许多穿支动脉,四肢缺损重建可采用穿支-穿支吻合术进行穿支皮瓣移植,如SCIP皮瓣、胸背动脉穿支皮瓣、脐旁穿支皮瓣、腓动脉穿支皮瓣[7, 21]。功能性肌肉、骨、神经、肌腱及筋膜可以用嵌合皮瓣同时进行重建[22]

3.4.1 手部和上肢重建

各种带蒂穿支皮瓣可用于相对较小的缺损,但需要额外的皮肤移植来闭合供体部位[23]。穿支游离皮瓣更适用于修复中到大的软组织缺损,使其达到功能及美学重建。SCIP皮瓣在上肢重建中起重要作用,尤其适用于手背皮肤重建,且有助于同时进行淋巴间置皮瓣转移(lymph interpositional flap transfer, LIFT)淋巴重建,进而预防淋巴水肿[24-25]。足趾皮瓣也可用于再造手指皮肤,通过游离皮瓣移植再造足趾供区[26]

3.4.2 下肢重建

在超显微外科手术中,穿支-穿支吻合的穿支皮瓣转移是小腿远端和足部缺损重建的一种选择。由于任何无名血管都可以作为受体血管,超显微外科穿支皮瓣可适用于严重肢体缺血。嵌合SCIP皮瓣可以转移髂骨、深筋膜、缝匠肌、腹股沟淋巴结及股外侧皮神经等多种组织,不需要大的受体血管,可应用于踝关节或足部重建[27]。由于下肢易发生水肿,淋巴重建在改善术后生活质量方面起重要作用。因此,当缺损包括主要淋巴管道时,应进行淋巴结转移(lymph node transfer, LNT)、淋巴管转移(lymph vessel transfer, LVT)或LIFT淋巴重建[28]。带血管化髂骨的嵌合SCIP皮瓣可用于复杂缺损的重建,如足趾趾骨,以保持足趾的功能和形状。

3.5 淋巴重建

淋巴重建对于肿瘤术后尤其是淋巴结清扫或放疗后引起的淋巴疾病很重要,包括顽固性淋巴水肿、淋巴瘘和淋巴囊肿[29-30]。淋巴水肿是一种阻塞性淋巴疾病,而淋巴瘘和淋巴囊肿是渗漏性淋巴疾病。由于简单的结扎术可能导致淋巴流动阻塞和随后的淋巴水肿发展,对于淋巴疾病均应进行淋巴重建。

淋巴重建主要有2种方法:淋巴吻合和淋巴转移。淋巴吻合包括淋巴-淋巴吻合术(lymphatic-lymphatic anastomosis, LLA)和淋巴-静脉吻合术(lymphatic-venular anastomosis, LVA)[31],均采用超显微手术内膜-内膜接合方式。其中,LVA是由O’Brien等首次应用[32],效果很长时间内不明确,直到超显微外科先驱Koshima报道LVA治疗后淋巴水肿患者的长期随访结果优于保守治疗[33]。淋巴转移用于LVA难治的进展性淋巴水肿患者[34]。LNT可使用穿支-穿支吻合的穿支淋巴结皮瓣。在LNT及LVT中,将血管化淋巴结转移至受区以吸收其阻塞的淋巴;在LIFT中,将含淋巴管的穿支皮瓣转移到受区,以桥接肿瘤切除引起的远、近端淋巴管残端间隙[28]。SCIP皮瓣可用于LNT、LVT及LIFT。此外,基于胸背动脉穿支、胸外侧动脉穿支和肋间动脉穿支的腋淋巴结皮瓣,以及基于DIEP和SCIP的腹股沟淋巴结皮瓣也可用于淋巴转移。

在肢端肿瘤手术切除后,主要淋巴管道常被一起切除,导致切除部位远端进行性淋巴水肿。在吲哚菁绿(indocyanine green, ICG)淋巴造影的精确定位下,可以通过基于淋巴轴的皮瓣转移来重建淋巴回流。应用超显微外科技术治疗淋巴水肿可能是其对肿瘤外科最重要的贡献之一,能有效提高肿瘤患者术后的生活质量。

3.6 神经重建

肿瘤切除可伴随感觉或运动神经损伤,整形外科医生应考虑神经重建以获得更好的功能恢复。神经缺损多采用血管化神经皮瓣重建,特别是对于运动神经重建,其较非血管化神经移植物具有更好的神经再生功能,神经再生速度为后者的4倍[35-36]。基于SCIP的血管化股外侧皮神经是神经皮瓣转移的有效选择。神经皮瓣可与肌皮瓣联合用于软组织缺损。当神经缺损较短时,可用基于缺损神经本身的筋膜翻转瓣进行自体神经重建,从而避免供区功能障碍[37]

综上所述,恶性肿瘤发病率逐年增加,肿瘤患者的术后生活质量受到广泛关注。目前积极切除、肢体保护和辅助治疗相结合的策略意味着需要多学科重建来解决治疗后组织缺损、功能缺损和并发症。重建的目的不仅是覆盖缺损,更重要的是恢复形态及功能重建。超显微外科技术使在供区损伤小的情况下分离和吻合小口径血管成为可能,可根据受区需要的组织类型及组织量等综合匹配选择皮瓣,实现精准修复。目前仍存在穿支血管及淋巴管定位、解剖变异等问题,可通过手持多普勒超声检查(hand-held Doppler sonography, HDD)、磁共振血流成像术等进行穿支血管的影像学定位,或通过显微机器人手术平台(如MSR机器人[38])提高超显微外科手术的成功率,但仍有待进一步研究。而基于SCIP皮瓣超显微外科技术侵入性更小、供区发病率更低,其在肿瘤整形重建外科领域有广泛的应用前景。

利益冲突: 所有作者声明不存在利益冲突。

参考文献
[1]
CHANG E I, CHU C K, CHANG E I. Advancements in imaging technology for microvascular free tissue transfer[J]. J Surg Oncol, 2018, 118(5): 729-735. [DOI]
[2]
KNAUS W J, ALLURI R, BAKRI K, et al. Oncologic reconstruction of the hand and upper extremity: Maximizing functional outcomes[J]. J Surg Oncol, 2016, 113(8): 946-954. [DOI]
[3]
NASIR S, AYDIN M A. Reconstruction of soft tissue defect of lower extremity with free SCIA/SIEA flap[J]. Ann Plast Surg, 2008, 61(6): 622-626. [DOI]
[4]
查选平, 林妹, 雷馥铭, 等. 三角形筋膜皮瓣转移修复术治疗骶尾部复杂藏毛窦的临床疗效[J]. 中国临床医学, 2020, 27(5): 844-847.
ZHA X P, L M, LEI F M, et al. Clinical application of triangular fasciocutaneous flap in complex sacrococcygeal pilonidal sinus surgery[J]. Chin J Clin Med, 2020, 27(5): 844-847. [URI]
[5]
KOSHIMA I, NANBA Y, TSUTSUI T, et al. Superficial circumflex iliac artery perforator flap for reconstruction of limb defects[J]. Plast Reconstr Surg, 2004, 113(1): 233-240. [DOI]
[6]
ÖZKAN H S, İRKÖREN S, AYDIN O E, et al. Medial sural artery perforator flap in head and neck reconstruction[J]. Eur Arch Otorhinolaryngol, 2016, 273(12): 4431-4436. [DOI]
[7]
KOSHIMA I, YAMAMOTO T, NARUSHIMA M, et al. Perforator flaps and supermicrosurgery[J]. Clin Plast Surg, 2010, 37(4): 683-689, vii-viii. [DOI]
[8]
YAMAMOTO T, YAMAMOTO N, YAMASHITA M, et al. Establishment of supermicrosurgical lymphaticovenular anastomosis model in rat[J]. Microsurgery, 2017, 37(1): 57-60. [DOI]
[9]
HONG J P. The use of supermicrosurgery in lower extremity reconstruction: the next step in evolution[J]. Plast Reconstr Surg, 2009, 123(1): 230-235. [DOI]
[10]
YAMAMOTO T, YOSHIMATSU H, KIKUCHI K, et al. Use of non-enhanced angiography to assist the second toetip flap transfer for reconstruction of the fingertip defect[J]. Microsurgery, 2014, 34(6): 481-483. [DOI]
[11]
PAFITANIS G, NARUSHIMA M, YAMAMOTO T, et al. Insights to establish early learning curve in clinical supermicrosurgery[J]. Microsurgery, 2019, 39(1): 100-101. [DOI]
[12]
YAMAMOTO T, NARUSHIMA M, KIKUCHI K, et al. Lambda-shaped anastomosis with intravascular stenting method for safe and effective lymphaticovenular anastomosis[J]. Plast Reconstr Surg, 2011, 127(5): 1987-1992. [DOI]
[13]
DANIEL R K, TAYLOR G I. Distant transfer of an island flap by microvascular anastomoses. A clinical technique[J]. Plast Reconstr Surg, 1973, 52(2): 111-117. [DOI]
[14]
HONG J P, SUN S H, BEN-NAKHI M. Modified superficial circumflex iliac artery perforator flap and supermicrosurgery technique for lower extremity reconstruction: a new approach for moderate-sized defects[J]. Ann Plast Surg, 2013, 71(4): 380-383. [DOI]
[15]
GOH T L H, PARK S W, CHO J Y, et al. The search for the ideal thin skin flap: superficial circumflex iliac artery perforator flap--a review of 210 cases[J]. Plast Reconstr Surg, 2015, 135(2): 592-601. [DOI]
[16]
OZEK C, GUNDOGAN H, BILKAY U, et al. Nasal columella reconstruction with a composite free flap from the root of auricular helix[J]. Microsurgery, 2002, 22(2): 53-56. [DOI]
[17]
LASSUS P, HUSSO A, VUOLA J, et al. More than just the helix: a series of free flaps from the ear[J]. Microsurgery, 2018, 38(6): 611-620. [DOI]
[18]
KOSHIMA I, YAMAMOTO H, HOSODA M, et al. Free combined composite flaps using the lateral circumflex femoral system for repair of massive defects of the head and neck regions: an introduction to the chimeric flap principle[J]. Plast Reconstr Surg, 1993, 92(3): 411-420. [DOI]
[19]
GENTILESCHI S, SERVILLO M, GARGANESE G, et al. Surgical therapy of vulvar cancer: how to choose the correct reconstruction?[J]. J Gynecol Oncol, 2016, 27(6): e60. [DOI]
[20]
BLONDEEL P N, VAN LANDUYT K H I, MONSTREY S J M, et al. The "Gent" consensus on perforator flap terminology: preliminary definitions[J]. Plast Reconstr Surg, 2003, 112(5): 1378-1383; quiz 1383, 1516. [DOI]
[21]
CHERUBINO M, STOCCO M D C, SALLAM M D D, et al. Superthin SCIP flap for reconstruction of subungual melanoma: aesthetic functional surgery[J]. Plast Reconstr Surg, 2018, 142(5): 807e-808e. [DOI]
[22]
USAMI S, OKAZAKI M. Fingertip reconstruction with a posterior interosseous artery perforator flap: a minimally invasive procedure for donor and recipient sites[J]. J Plast Reconstr Aesthet Surg, 2017, 70(2): 166-172. [DOI]
[23]
TOTH B A, ELLIOTT L F. Aesthetic refinements in reconstructive microsurgery[J]. Ann Plast Surg, 1989, 22(2): 117-125. [DOI]
[24]
YAMAMOTO T, YOSHIMATSU H, NARUSHIMA M, et al. A modified side-to-end lymphaticovenular anastomosis[J]. Microsurgery, 2013, 33(2): 130-133. [DOI]
[25]
NARUSHIMA M, YAMASOBA T, ⅡDA T, et al. Pure skin perforator flaps: the anatomical vascularity of the superthin flap[J]. Plast Reconstr Surg, 2018, 142(3): 351e-360e. [DOI]
[26]
YAMAMOTO T, HAYASHI A, TSUKUURA R, et al. Transversely-inset great toe hemi-pulp flap transfer for the reconstruction of a thumb-tip defect[J]. Microsurgery, 2015, 35(3): 235-238. [DOI]
[27]
YAMAMOTO T, SAITO T, ISHIURA R, et al. Quadruple-component superficial circumflex iliac artery perforator (SCIP) flap: a chimeric SCIP flap for complex ankle reconstruction of an exposed artificial joint after total ankle arthroplasty[J]. J Plast Reconstr Aesthet Surg, 2016, 69(9): 1260-1265. [DOI]
[28]
YAMAMOTO T, ⅡDA T, YOSHIMATSU H, et al. Lymph flow restoration after tissue replantation and transfer: importance of lymph axiality and possibility of lymph flow reconstruction without lymph node transfer or lymphatic anastomosis[J]. Plast Reconstr Surg, 2018, 142(3): 796-804. [DOI]
[29]
YAMAMOTO T, YOSHIMATSU H, KOSHIMA I. Navigation lymphatic supermicrosurgery for iatrogenic lymphorrhea: supermicrosurgical lymphaticolymphatic anastomosis and lymphaticovenular anastomosis under indocyanine green lymphography navigation[J]. J Plast Reconstr Aesthet Surg, 2014, 67(11): 1573-1579. [DOI]
[30]
YAMAMOTO T, YOSHIMATSU H, YAMAMOTO N. Complete lymph flow reconstruction: a free vascularized lymph node true perforator flap transfer with efferent lymphaticolymphatic anastomosis[J]. J Plast Reconstr Aesthet Surg, 2016, 69(9): 1227-1233. [DOI]
[31]
YAMAMOTO T, YAMAMOTO N, HAYASHI A, et al. Supermicrosurgical deep lymphatic vessel-to-venous anastomosis for a breast cancer-related arm lymphedema with severe sclerosis of superficial lymphatic vessels[J]. Microsurgery, 2017, 37(2): 156-159. [DOI]
[32]
O'BRIEN B M, SYKES P, THRELFALL G N, et al. Microlymphaticovenous anastomoses for obstructive lymphedema[J]. Plast Reconstr Surg, 1977, 60(2): 197-211. [DOI]
[33]
KOSHIMA I, NANBA Y, TSUTSUI T, et al. Long-term follow-up after lymphaticovenular anastomosis for lymphedema in the leg[J]. J Reconstr Microsurg, 2003, 19(4): 209-215. [DOI]
[34]
OZTURK C N, OZTURK C, GLASGOW M, et al. Free vascularized lymph node transfer for treatment of lymphedema: A systematic evidence based review[J]. J Plast Reconstr Aesthet Surg, 2016, 69(9): 1234-1247. [DOI]
[35]
YAMAMOTO T, YOSHIMATSU H, NARUSHIMA M, et al. Indocyanine green lymphography findings in primary leg lymphedema[J]. Eur J Vasc Endovasc Surg, 2015, 49(1): 95-102. [DOI]
[36]
KOSHIMA I, HARⅡ K. Experimental study of vascularized nerve grafts: multifactorial analyses of axonal regeneration of nerves transplanted into an acute burn wound[J]. J Hand Surg Am, 1985, 10(1): 64-72. [DOI]
[37]
ITO T, NAKAGAWA R, ISHIURA R, et al. Nerve reconstruction after sural nerve biopsy with supermicrosurgical fascicular turnover flap[J]. J Plast Reconstr Aesthet Surg, 2016, 69(1): 146. [DOI]
[38]
VAN MULKEN T J M, SCHOLS R M, QIU S S, et al. Robotic (super) microsurgery: feasibility of a new master-slave platform in an in vivo animal model and future directions[J]. J Surg Oncol, 2018, 118(5): 826-831. [DOI]

文章信息

引用本文
高子煦, 高璐, 王璐, 任明, 沈康杰, 顾建英, 卫传元. 基于旋髂浅动脉穿支皮瓣超显微外科技术在肿瘤整形外科中的应用进展[J]. 中国临床医学, 2023, 30(1): 154-158.
GAO Zi-xu, GAO Lu, WANG Lu, REN Ming, SHEN Kang-jie, GU Jian-ying, WEI Chuan-yuan. Advances in the application of supermicrosurgery based on superficial circumflex iliac artery perforator flap in oncology plastic surgery[J]. Chinese Journal of Clinical Medicine, 2023, 30(1): 154-158.
通信作者(Corresponding authors).
顾建英, Tel: 021-51217556, E-mail: prof_jianyinggu@163.com;
卫传元, E-mail: Dr_chuanyuanwei@163.com.
基金项目
国家自然科学基金(81972559),上海申康医院发展中心临床三年行动计划(SHDC2020CR2067B)
Foundation item
Supported by National Natural Science Foundation of China (81972559) and Shanghai Shenkang Hospital Development Center Project (SHDC2020CR2067B)

工作空间