文章快速检索     高级检索
   中国临床医学  2022, Vol. 29 Issue (3): 504-513      DOI: 10.12025/j.issn.1008-6358.2022.20212506
0
不同麻醉策略对肿瘤术后免疫抑制、复发及转移的影响
关昱 , 仓静     
复旦大学附属中山医院麻醉科,上海 200032
摘要:肿瘤相关死亡最常见的原因为复发及转移。手术及麻醉诱导的免疫抑制与肿瘤复发、转移之间的联系仍未明确。围手术期各种相关因素都将影响肿瘤患者的转归,包括麻醉药物和麻醉技术等。本文总结目前不同的麻醉相关药物、麻醉技术及围手术期相关因素等对免疫调节、肿瘤复发及转移影响的主要发现与结果,为优化肿瘤手术的麻醉策略提供参考。
关键词麻醉    肿瘤    复发    转移    免疫抑制    
Effects of different anesthesia strategies on postoperative immunosuppression, cancer recurrence and metastasis
GUAN Yu , CANG Jing     
Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Abstract: The most common causes of cancer-related death are recurrence and metastasis. The relationship between surgery and anesthesia-induced immunosuppression and cancer recurrence and metastasis remains unclear. A variety of perioperative factors, including anesthetic drugs and techniques will affect the outcome of cancer patients. This article summarizes the main results and findings of different anesthesia-related drugs, techniques and perioperative factors on immune regulation, cancer recurrence and metastasis, providing a reference for the optimization of anesthesia strategies for cancer surgery.
Key words: anesthesia    neoplasm    recurrence    metastasis    immunosuppression    

在全球范围内,肿瘤已成为人类第二大致死原因。经估计,截至2040年的新发肿瘤病例将达到2 840万[1]。手术是切除原发性肿瘤以及提高绝大多数实体瘤患者长期存活率的最有效办法[2],接受各类手术治疗的患者已达到总发病人数的80%以上[3]。而在手术治疗后,肿瘤复发、转移的现象仍然存在,导致高达90%的肿瘤相关死亡率[4]

在临床上,有针对性得选择及实施相关麻醉策略对肿瘤患者转归的影响目前仍无定论。因此,探讨不同的麻醉药物、技术及麻醉相关围手术期因素的实施对肿瘤复发、转移的影响,进而优化麻醉策略,改善肿瘤患者预后,具有非常重要的临床和社会意义。

1 手术对肿瘤进展的影响

外科手术操作可能会促进肿瘤的转移。原发性肿瘤被切除后,转移性肿瘤的生长速度加快,即使是诊断性的细针穿刺活检操作,都有可能增加局部肿瘤复发、淋巴结转移的风险。其原因可以解释为,一方面在手术操作过程中,脱落的微转移灶可能会释放至血液或淋巴管中,这种微小、残留的病灶无法通过手术切除而消除[5]。术后24 h内循环肿瘤细胞的持续存在与肿瘤复发风险增加被认为具有独立相关性[6],这些病灶的发展情况在一定程度上取决于宿主的围术期免疫水平。另一方面,外科手术形成的创伤诱导下丘脑-垂体-肾上腺轴(hypothalamic-pituitary-adrenal-axis, HPA)和交感神经系统(sympathetic-nervous-system, SNS)的激活[2],这种效应对于伤口的愈合是至关重要的,而此效应在致使细胞介导免疫(cell-mediated immunity, CMI)受抑制的同时又促进儿茶酚胺、前列腺素E2(prostaglandin E2, PGE2)的释放。这些因子将使免疫抑制相关细胞因子,如白介素4(interleukin-4, IL-4)、白介素10(IL-10)、转化生长因子β(transforming growth factor-β, TGF-β)、血管内皮生长因子(vascular endothelial growth factor, VEGF),和促炎细胞因子,如白介素6(IL-6)、白介素8(IL-8)等增加,进一步促进肿瘤血管形成和肿瘤细胞转移[7],增加肿瘤休眠逃逸进展的风险[8]

2 不同麻醉策略对肿瘤复发及转移的影响 2.1 全身麻醉 2.1.1 静脉麻醉药物对肿瘤的影响

静脉麻醉药物主要作用于中枢神经系统产生麻醉效应,目前被广泛用于麻醉诱导和麻醉维持。其中,丙泊酚作为一种临床常用的静脉麻醉药,与其他不同的是,可增加细胞毒性T细胞(cytotoxic T lymphocyte, CTL)的活性,并减少促炎细胞因子的生成,抑制环氧化酶-2(cyclooxygenase-2, COX-2)和PGE2功能,同时不会对Th1/Th2、IL-2/IL-4或CD4+/CD8+T细胞的比例造成影响,因此在一定程度上减轻了手术及麻醉导致的免疫抑制[9]。在小鼠胸腺瘤模型中,丙泊酚显著抑制肿瘤生长,很可能是通过增强CTL细胞的活性,抑制巨噬细胞中COX的活性,并通过作用于自然杀伤(natural killer, NK)细胞上的EP4受体,减少的PGE2的产生,下调干扰素-γ(interferon-γ, IFN-γ)水平,抑制肿瘤的生长及肿瘤细胞的免疫逃逸[10-11]。丙泊酚亦可通过减少mRNA向蛋白质的翻译过程,以与环境氧浓度成正比的方式可逆地抑制缺氧诱导因子(hypoxia-inducible factor-1α, HIF-1α)的活性,以此抑制HIF-1α促进血管生成、细胞增殖和转移等作用[12]

除丙泊酚外,其他静脉麻醉药物亦可对免疫系统产生多种影响。氯胺酮已被证明可通过阻断各种肿瘤细胞亚群中的NMDA受体而产生抗肿瘤作用[13-14],同时通过削弱VEGF的表达和细胞迁移能力[15],降低有氧糖酵解,抑制肿瘤的进展[16]。硫喷妥钠可通过抑制核因子kappaB的激活,减少IL-2、IL-6、IL-8和IFN-γ的表达以及T细胞的活化[17],并以剂量依赖性的方式损害中性粒细胞功能[18]

2.1.2 挥发性麻醉药物对肿瘤的影响

挥发性麻醉药物通过呼吸系统吸入并产生全身麻醉作用,七氟烷、异氟烷和地氟烷等药物在临床上被广泛使用于麻醉的维持,而挥发性麻醉药物亦会对免疫系统产生影响[19]

针对先天性免疫,七氟烷可减少中性粒细胞的数量[20],Markovic等[21]在接触氟烷或异氟烷的试验小鼠中发现NK细胞活性受抑。对于适应性免疫,异氟烷、七氟烷可以诱导T细胞、B细胞凋亡[22-24],而与此相反,地氟醚并未显示促凋亡作用[23],并通过保持IL-2/IL-4和CD4+/CD8+T细胞比例,有助于保护乳腺癌术后患者的免疫格局[25]。除直接影响以外,挥发性麻醉剂可通过其他途径对肿瘤免疫产生影响。如氟烷、七氟烷可通过增加HIF-α蛋白表达,导致不良的肿瘤预后[22, 26]。异氟醚暴露下卵巢癌细胞的迁移、增殖增加,并上调胰岛素样生长因子(insulin-like growth factor,IGF)-1、IGF-1R、基质金属蛋白酶(matrix metalloproteinases, MMP)-2、MMP-9的表达,促进肿瘤转移[27]。同时,异氟醚可促进VEGF、血管生成素-1的表达,诱导血管形成[27]。在一项随机对照试验[28]中,接受七氟烷及阿片类药物的乳腺癌患者较丙泊酚联合椎管内麻醉组患者表现出更高的VEGF-C水平,表明挥发性麻醉剂在肿瘤的血管形成中起到重要作用。

2.1.3 全凭静脉麻醉技术对肿瘤的影响

临床前研究[29]结果表明,用于全身麻醉的药物会影响细胞免疫并对肿瘤细胞的增殖、迁移和侵袭产生影响。其中,体外研究[19]结果表明挥发性麻醉剂具有促进肿瘤转移的作用,而丙泊酚显示出保护细胞免疫、减少肿瘤转移的作用。因此,以丙泊酚为基础的全凭静脉麻醉(total intravenous anesthesia,TIVA)在肿瘤患者的手术麻醉期间被认为较吸入麻醉(inhalational anesthesia,INHA)更具优势[30]。一项对使用INHA与TIVA的恶性肿瘤手术患者长期预后的荟萃分析[31]结果显示,TIVA与术后较低的全因死亡率相关,Andrea等[32]的另一项荟萃分析亦显示出TIVA与INHA相比可能与改善多种肿瘤类型患者的无复发生存期和总生存期相关。尽管在大型的回顾性研究中TIVA表现出改善肿瘤患者结局的作用,但目前仍无高质量的证据表明与吸入麻醉相比,TIVA是更佳的选择。

2.2 区域阻滞 2.2.1 局部麻醉剂对肿瘤的影响

局部麻醉剂通过阻断电压门控钠通道(voltage gated sodium channels, VGSC)有效抑制神经信号的传输,以保障有效的术中麻醉及术后镇痛。目前已发现局部麻醉剂本身可以通过多种途径起到抗肿瘤作用:(1)局部麻醉剂可通过直接细胞毒性导致肿瘤细胞坏死或凋亡[33];(2)局部麻醉剂可以抑制肿瘤细胞的增殖、迁移和侵袭。丁卡因、利多卡因抑制微管的延伸,从而抑制肿瘤细胞聚集和重新附着的能力,减少乳腺肿瘤细胞的转移、扩散[34]。利多卡因亦可通过抑制细胞表面肝素结合表皮生长因子(epidermal growth factor, EGF)的胞外域脱落和调节细胞内钙浓度来阻止肿瘤细胞的侵袭,进一步抑制肿瘤的扩散及转移[35],同时抑制EGF对EGFR酪氨酸激酶活性的刺激,抑制血清EGF诱导的舌癌细胞增殖[36]。局部麻醉剂可以与MMP-2和TNF-α依赖的MMP-9相互作用,通过Src依赖的炎症信号传导途径制肿瘤细胞侵袭[37-38];(3)临床相关剂量的局部麻醉剂被证明可以在体外发挥去甲基化的特性,通过DNA甲基化对基因表达的调节,抑制包括乳腺癌、肝癌和白血病细胞系中的肿瘤生长[39-41]。而当利多卡因与化疗药物联合使用时,表现出相加的去甲基化作用[42];(4)局部麻醉剂可以作用于VGSC并产生阻断作用,直接作用于肿瘤细胞,如结肠癌、乳腺癌和肺癌细胞都高度表达VGSC,从而可能抑制肿瘤生长[43-44]。Baptista-Hon等[45]发现,罗哌卡因通过抑制结肠癌细胞中的钠通道,减少了肿瘤细胞侵袭,因此可能在结肠癌切除术中发挥正面作用。

总之,局部麻醉剂的应用可以调节肿瘤细胞的生长,并可能对肿瘤患者的预后起到积极的影响。

2.2.2 区域麻醉技术对肿瘤的影响

区域麻醉技术包括硬膜外麻醉、脊髓麻醉、神经阻滞及局麻药浸润等,可以在手术期间及手术后提供有效的镇痛[46]。区域麻醉也被认为可以通过以下途径保护术后免疫系统功能,降低肿瘤转移及复发的风险:(1)通过抑制有害的神经冲动到达中枢神经系统,减弱手术刺激诱导的神经内分泌反应[46];(2)在术中减少了挥发性麻醉剂及阿片类药物的使用,改善术后免疫抑制;(3)局部麻醉剂的全身吸收对肿瘤细胞的直接影响[47]。多项随机对照试验结果[48-50]显示,与接受单纯全身麻醉相比,全身麻醉联合区域阻滞可以保持循环NK细胞的数量和功能,增加NK细胞及辅助性T细胞,并且在循环中维持较高浓度的抗肿瘤细胞因子,如IL-2和IFN-γ等。接受椎旁阻滞镇痛的乳腺癌患者体内的NK细胞数较单纯全身麻醉的患者更高[50];在肺癌手术患者中,区域阻滞的使用增加了CD8+T细胞并降低了FOXP3+T细胞比例[51]

由于目前已发表的临床研究结果大多基于回顾性研究,区域麻醉技术在临床实践中对肿瘤患者转归的影响存在持续的争议。Myles等[52]发现,腹部恶性肿瘤手术中的硬膜外阻滞技术与无复发生存率的提高无关。在另一项纳入近54 000例患者的回顾性研究[53]中发现,区域麻醉与提高肿瘤患者的总体生存率相关,但不能减少恶性肿瘤的术后复发率。一项随机对照研究[54]结果显示,与静脉镇痛相比,硬膜外镇痛不能改善肺癌的无复发生存率、总体生存率或肿瘤特异性生存率。在一项前瞻性临床研究[55]中,接受连续椎旁镇痛较接受阿片类药物镇痛的乳腺癌术后患者应激指标低,但未能观察到2组患者中VEGF和PGE2浓度的差异。目前这些结果表明,区域阻滞联合全身麻醉可能是适用于恶性肿瘤患者的一项麻醉策略,但着眼于目前的临床试验结果,无论是通过阿片类药物节省或是通过交感神经阻滞等潜在机制,都未能发现明确的证据表明区域阻滞可以改善肿瘤患者的长期结果。

2.2.3 静脉内使用利多卡因对肿瘤的影响

利多卡因作为一种酰胺类局部麻醉剂,除了在椎管内、局部浸润或静脉使用以治疗心律失常以外,还可以通过静脉内给药的途径以达到镇痛的作用,被常用于肿瘤手术中[56]。其在体外和体内均可直接或间接作用于肿瘤细胞及肿瘤微环境。静脉注射利多卡因可增强NK细胞的细胞毒作用使CMI受益[57],减弱淋巴细胞的早期凋亡,维持IFN-γ与IL-4的比值,在细胞免疫中起到保护作用。近期,一项大型回顾性研究[58]观察了接受胰腺癌手术患者的无病生存率、总生存期与术中使用静脉输注利多卡因的关系,结果显示胰腺癌手术期间使用静脉输注利多卡因与术中的阿片类药物节省以及患者的总生存期延长有关。

总之,体内外以及临床研究证据,利多卡因具有强效的抗炎作用和对固有免疫系统的保护作用,但鉴于潜在的风险和尚未得到大型前瞻性临床研究所确定的益处,应更加谨慎、限于严格安全监管下在参与临床试验的患者中使用。

2.3 阿片类药物的围术期使用对肿瘤的影响

阿片类药物是急性术后疼痛和肿瘤相关疼痛管理的基石,根据患者的手术类型及患者的疼痛情况定量或患者自控镇痛方法从而进行全身使用。尽管如此,动物试验、回顾性临床试验和一些前瞻性研究都将阿片类药物与促进肿瘤进展、降低长期生存率相关。阿片类药物通过多种途径促进肿瘤生长及转移:(1)通过调节细胞、体液反应导致免疫抑制[59];(2)对肿瘤细胞、免疫细胞及内皮细胞等直接作用[60];(3)神经-内分泌介导的应激反应所致的肿瘤转移和血管生成[61]

目前已知的试验证据表明,存在以下相关作用途径:(1)作用于肿瘤细胞上过度表达的μ阿片样受体(μ-receptor, MOR)导致血管VEGF依赖性的血管生成[62];(2)EGF通路的激活[63];(3)NET-1基因上调所致肿瘤细胞迁移增加[64];(4)通过G蛋白耦联受体和一氧化氮(NO)合成,刺激丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路[65],致COX-2的酶活性增加及PGE2浓度增加[66]。有多项研究关注MOR在调节肿瘤生长和转移中的作用。MOR的过度表达已在肺、前列腺癌中得到证明。表达MOR的乳腺癌细胞在吗啡的作用下,不仅表现出细胞迁移的增加,亦导致NET-1基因的水平增加,而这种基因已知可以促进腺癌细胞系的迁移[64]。除MOR外,吗啡还能显著抑制脂多糖(lipopolysaccharide,LPS)诱导的Toll样受体4(toll-like receptor 4, TLR4)激活[67],降低巨噬细胞上的TLR4的表达,导致免疫抑制。在小鼠乳腺肿瘤模型中,吗啡显示出临床相关剂量下增加血管生成和生长,促进淋巴管生成、肥大细胞活化和脱颗粒,增加炎性细胞因子、类胰蛋白酶和P物质的水平,接受治疗的小鼠肿瘤负荷增加,存活时间缩短[68]。另有研究[69]证据显示,芬太尼和舒芬太尼可以降低NK细胞活性,同时上调Treg。

近来,部分针对吗啡的体外研究证据表明,其作用还包括许多潜在的抗肿瘤途径,包括减少白细胞的跨内皮迁移,减少血管生成[70];降低循环中的MMP-9和尿激酶样纤溶酶原激活剂的水平[71],抑制肿瘤细胞的生长;降低IL-4诱导的MMP-9表达和“替代”(M2)巨噬细胞激活[72];刺激阿片受体和下游的抑制性Gi蛋白介导的半胱天冬酶激活,导致细胞凋亡[73]

因此,在临床上,阿片类药物的使用对肿瘤的短期及长期影响仍存在争议。目前已有回顾性研究针对人类临床数据进行分析,其中一项基于人群的队列研究[74]调查30 000余例乳腺癌患者的肿瘤复发与阿片类药物使用的关联,结果显示阿片类药物的使用(包括种类、剂量、时间)均与乳腺癌复发无关。基于以上大部分的研究为体外研究或回顾性研究,目前所得到的证据尚不能否定阿片类药物对于肿瘤患者的治疗作用。为探讨阿片类药物对肿瘤患者的转归影响,仍需一些设计明确的前瞻性研究。

2.4 α2-肾上腺素能受体激动剂对肿瘤的影响

右美托咪定是一种α2-肾上腺素能受体激动剂,其对α2受体的亲和力是可乐定的8倍[75],其在围术期发挥镇静、抗焦虑、镇痛、抗交感神经作用以及在阿片类药物及静脉麻醉剂节省方面显示出较为独特的效果[76-77]。近期的一些体外及回顾性研究[78]表明,右美托咪定可以通过直接促进肿瘤细胞增殖、改变肿瘤微环境,促进肿瘤进展。右美托咪定通过激活咪唑啉受体,增加参与非小细胞肺癌细胞增殖的HIF和VEGF的形成。一项回顾性研究[79]对1 404例非小细胞肺癌的手术患者的数据进行了分析,显示右美托咪定的使用与术后5年的较低存活率相关。Lavon等[80]在一项体外研究中报道了临床剂量的右美托咪定对啮齿动物模型的肿瘤进展影响,结果显示在乳腺癌、结肠癌和肺癌的模型中均发现肿瘤细胞的保留及继发肿瘤的生长。

目前针对α2-肾上腺素能受体激动剂对临床肿瘤患者的转归影响的前瞻性试验较少,并且目前的研究仅限于部分肿瘤类型。鉴于在恶性肿瘤手术患者及重症监护室患者的广泛使用,有必要进一步探寻其对临床肿瘤的长期影响及潜在机制。

2.5 非甾体抗炎药对肿瘤的影响

NSAIDs对于肿瘤进展的影响可能是肿瘤特异性的,其通过对肿瘤细胞表达的COX-2受体的直接作用以及间接拮抗NK细胞产生前列腺素,增加NK细胞毒性、β-肾上腺素能拮抗作用,同时降低术后肺肿瘤细胞的滞留[81]。体内和体外研究[82]评估了选择性COX-2抑制剂塞来昔布和选择性COX-1抑制剂SC-560对结肠癌细胞系中细胞存活、细胞周期分布和细胞凋亡的影响,结果表明,2种药物均诱导G0/G1期阻滞并降低细胞存活率。在Forget等[83]的一项大型回顾性分析结果显示,720例乳腺癌患者在术中使用的酮咯酸或双氯芬酸与延长的无病生存期及总生存期相关。而在其对1 111例患前列腺癌并接受根治性前列腺切除术的患者中进行的回顾性研究[84]发现,围手术期使用酮咯酸并未显示任何生存益处。目前的证据表明,围术期非甾体抗炎药的使用对降低肿瘤复发风险可能是有益的,应个体化地去使用并进行风险受益评估。

2.6 神经肌肉阻滞剂对肿瘤的影响

神经肌肉阻滞剂(neuromuscular blocking agents, NMBAs)通过选择性作用于神经-肌肉接头处,暂时性地影响兴奋的传递从而达到肌肉松弛的效果,在临床中被普遍用于麻醉诱导及维持。目前,关于神经肌肉阻滞剂对肿瘤复发、转移影响的研究较少,研究仅限于体外研究。

亚巴森的研究[85]显示,顺式阿曲库铵和维库溴铵在体外对人肺癌细胞A549和肝癌细胞HepG2显示出抑制癌细胞增殖、转移和侵袭的现象。Jiang等[86]发现,罗库溴铵和琥珀胆碱在体外促进了乳腺癌细胞系MDA-MB-231的增殖、迁移和侵袭,而维库溴铵对恶性肿瘤细胞没有影响。另有研究[87]显示,罗库溴铵显著增加了胃肿瘤细胞的恶性表型,促进细胞的生长、体外侵袭与迁移,并且浓度依赖性促进胃恶性肿瘤细胞的黏附。过量的维库溴铵可以促进胃恶性肿瘤细胞SGC7901和BGC823的迁移和侵袭。

3 其他麻醉相关围手术期因素对肿瘤的影响 3.1 输血

围手术期进行异体输血可能会增加免疫抑制、肿瘤复发的风险[88],而这种同种异体输血导致的免疫抑制作用被称为输血相关免疫调节(transfusion-related immunomodulation, TRIM)。TRIM的发生机制包括抑制细胞毒性细胞和单核细胞活性、前列腺素释放增加、IL-2和IFN-γ等细胞因子的生成减少及抑制性T细胞的活性增强等[88]。TRIM的发生原因目前仍未被明确,但动物研究[89]结果表明,同种异体血液中的白细胞及其产物可能是输血后免疫紊乱的原因。大量的围术期输血(>3个单位)可能与复发相关[90]。近期一项回顾性研究[91]对1 469例接受肝细胞肝癌的患者进行了围术期输血与无病生存率、生存率相关性的分析,结果显示围术期输血与肝细胞肝癌切除术后的生存与复发独立相关,输注的单位越多,复发的可能性越大,生存期越短。输血需求、输血量往往取决于手术的复杂性、恶性肿瘤的严重程度、分期以及合并症,而肿瘤的转归除受输血影响以外,还受到包括肿瘤术后边缘残留、术前分期和术后辅助性治疗等因素的影响。因此,输血是否会增加肿瘤的复发及转移尚未明确,仍缺少良好设计的随机对照试验来解决此问题。

3.2 低体温

术中低体温(intraoperative hypothermia, IOH)会导致免疫系统的各组成部分受到影响,因此可能对肿瘤手术后的复发、转移产生一定的影响[92]。人体暴露于寒冷刺激会导致糖皮质激素水平升高以及交感神经反应,外周血管收缩以致组织中的氧气含量下降,使粒细胞的趋化性、吞噬作用以及自由基的产生受损[93]。在大鼠模型中,Ben-Eliyahu等[92]观察到低温大鼠体内的乳腺癌细胞转移灶是常温组的几乎5倍,并观察到低温组内循环NK细胞的溶解活性显著降低。Du等[94]研究显示,低温环境(低于34℃)会产生免疫抑制微环境,导致脾脏Treg和Th2细胞亚群增加,IL-4、IL-10水平增加,并在体外增加了肿瘤中的Treg细胞亚群和TGF-β1水平,增加了肺转移。并且,低温会导致人体出现可逆性的血小板功能障碍,与术中失血量的增加以及输血需求增加相关,进一步对肿瘤的复发及转移产生影响[95]

综上所述,麻醉药物、技术以及麻醉相关围术期的因素所诱导的免疫抑制可能会促进某些类型肿瘤患者的复发及转移。尽管在临床研究中存在相互矛盾或难以解释的结果,麻醉仍在免疫调节和肿瘤的复发、转移中发挥着至关重要的作用。手术作为目前治愈肿瘤的主要方式,与其密不可分的是麻醉的实施。因此,目前仍待一些正在进行的体内外研究、设计合理的前瞻性临床研究为麻醉对肿瘤复发、转移的影响提供证据及信息,并将研究结果转为临床实践,通过个体化的麻醉策略最大限度地减少肿瘤术后的复发及转移,改善肿瘤患者预后。

利益冲突:所有作者声明不存在利益冲突。

参考文献
[1]
SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. [DOI]
[2]
KIM R. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence[J]. J Transl Med, 2018, 16(1): 8. [DOI]
[3]
SULLIVAN R, ALATISE O I, ANDERSON B O, et al. Global cancer surgery: delivering safe, affordable, and timely cancer surgery[J]. Lancet Oncol, 2015, 16(11): 1193-1224. [DOI]
[4]
DILLEKAS H, ROGERS M S, STRAUME O. Are 90% of deaths from cancer caused by metastases?[J]. Cancer Med, 2019, 8(12): 5574-5576. [DOI]
[5]
POMMIER A, ANAPARTHY N, MEMOS N, et al. Unresolved endoplasmic reticulum stress engenders immune-resistant, latent pancreatic cancer metastases[J]. Science, 2018, 360(6394): eaao4908. [DOI]
[6]
NANDURI L K, HISSA B, WEITZ J, et al. The prognostic role of circulating tumor cells in colorectal cancer[J]. Expert Rev Anticancer Ther, 2019, 19(12): 1077-1088. [DOI]
[7]
CALCAGNI E, ELENKOV I. Stress system activity, innate and T helper cytokines, and susceptibility to immune-related diseases[J]. Ann N Y Acad Sci, 2006, 1069: 62-76. [DOI]
[8]
SHURIN M R, BARALDI J H, SHURIN G V. Neuroimmune regulation of surgery-associated metastases[J]. Cells, 2021, 10(2): 454. [DOI]
[9]
FANG P, ZHOU J, XIA Z, et al. Effects of propofol versus sevoflurane on postoperative breast cancer prognosis: a narrative review[J]. Front Oncol, 2021, 11: 793093.
[10]
KUSHIDA A, INADA T, SHINGU K. Enhancement of antitumor immunity after propofol treatment in mice[J]. Immunopharmacol Immunotoxicol, 2007, 29(3-4): 477-486. [DOI]
[11]
INADA T, KUBO K, SHINGU K. Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol[J]. J Anesth, 2011, 25(4): 569-575. [DOI]
[12]
HUANG H, BENZONANA L L, ZHAO H, et al. Prostate cancer cell malignancy via modulation of HIF-1alpha pathway with isoflurane and propofol alone and in combination[J]. Br J Cancer, 2014, 111(7): 1338-1349. [DOI]
[13]
MALSY M, GEBHARDT K, GRUBER M, et al. Effects of ketamine, s-ketamine, and MK 801 on proliferation, apoptosis, and necrosis in pancreatic cancer cells[J]. BMC Anesthesiol, 2015, 15: 111. [DOI]
[14]
ZHOU X, ZHANG P, LUO W, et al. Ketamine induces apoptosis in lung adenocarcinoma cells by regulating the expression of CD69[J]. Cancer Med, 2018, 7(3): 788-795. [DOI]
[15]
DUAN W, HU J, LIU Y. Ketamine inhibits colorectal cancer cells malignant potential via blockage of NMDA receptor[J]. Exp Mol Pathol, 2019, 107: 171-178. [DOI]
[16]
HU J, DUAN W, LIU Y. Ketamine inhibits aerobic glycolysis in colorectal cancer cells by blocking the NMDA receptor-CaMK Ⅱ-c-Myc pathway[J]. Clin Exp Pharmacol Physiol, 2020, 47(5): 848-856. [DOI]
[17]
LOOP T, LIU Z, HUMAR M, et al. Thiopental inhibits the activation of nuclear factor kappaB[J]. Anesthesiology, 2002, 96(5): 1202-1213. [DOI]
[18]
NISHINA K, AKAMATSU H, MIKAWA K, et al. The inhibitory effects of thiopental, midazolam, and ketamine on human neutrophil functions[J]. Anesth Analg, 1998, 86(1): 159-165. [DOI]
[19]
STOLLINGS L M, JIA L J, TANG P, et al. Immune modulation by volatile anesthetics[J]. Anesthesiology, 2016, 125(2): 399-411. [DOI]
[20]
FRÖHLICH D, ROTHE G, SCHWALL B, et al. Effects of volatile anaesthetics on human neutrophil oxidative response to the bacterial peptide FMLP[J]. Br J Anaesth, 1997, 78(6): 718-723. [DOI]
[21]
MARKOVIC S N, KNIGHT P R, MURASKO D M. Inhibition of interferon stimulation of natural killer cell activity in mice anesthetized with halothane or isoflurane[J]. Anesthesiology, 1993, 78(4): 700-706. [DOI]
[22]
TAVARE A N, PERRY N J, BENZONANA L L, et al. Cancer recurrence after surgery: direct and indirect effects of anesthetic agents[J]. Int J Cancer, 2012, 130(6): 1237-1250. [DOI]
[23]
LOOP T, DOVI-AKUE D, FRICK M, et al. Volatile anesthetics induce caspase-dependent, mitochondria-mediated apoptosis in human T lymphocytes in vitro[J]. Anesthesiology, 2005, 102(6): 1147-1157. [DOI]
[24]
WEI H, LIANG G, YANG H, et al. The common inhalational anesthetic isoflurane induces apoptosis via activation of inositol 1, 4, 5-trisphosphate receptors[J]. Anesthesiology, 2008, 108(2): 251-260. [DOI]
[25]
WOO J H, BAIK H J, KIM C H, et al. Effect of propofol and desflurane on immune cell populations in breast cancer patients: a randomized trial[J]. J Korean Med Sci, 2015, 30(10): 1503-1508. [DOI]
[26]
SHI Q Y, ZHANG S J, LIU L, et al. Sevoflurane promotes the expansion of glioma stem cells through activation of hypoxia-inducible factors in vitro[J]. Br J Anaesth, 2015, 114(5): 825-830. [DOI]
[27]
LUO X, ZHAO H, HENNAH L, et al. Impact of isoflurane on malignant capability of ovarian cancer in vitro[J]. Br J Anaesth, 2015, 114(5): 831-839. [DOI]
[28]
LOONEY M, DORAN P, BUGGY D J. Effect of anesthetic technique on serum vascular endothelial growth factor C and transforming growth factor beta in women undergoing anesthesia and surgery for breast cancer[J]. Anesthesiology, 2010, 113(5): 1118-1125. [DOI]
[29]
DUBOWITZ J A, SLOAN E K, RIEDEL B J. Implicating anaesthesia and the perioperative period in cancer recurrence and metastasis[J]. Clin Exp Metastasis, 2018, 35(4): 347-358. [DOI]
[30]
SOLTANIZADEH S, DEGETT T H, GÖGENUR I. Outcomes of cancer surgery after inhalational and intravenous anesthesia: a systematic review[J]. J Clin Anesth, 2017, 42: 19-25. [DOI]
[31]
JIN Z, LI R, LIU J, et al. Long-term prognosis after cancer surgery with inhalational anesthesia and total intravenous anesthesia: a systematic review and meta-analysis[J]. Int J Physiol Pathophysiol Pharmacol, 2019, 11(3): 83-94.
[32]
YAP A, LOPEZ-OLIVO M A, DUBOWITZ J, et al. Anesthetic technique and cancer outcomes: a meta-analysis of total intravenous versus volatile anesthesia[J]. Can J Anaesth, 2019, 66(5): 546-561. [DOI]
[33]
WU CHUANG A, KEPP O, KROEMER G, et al. Direct cytotoxic and indirect, immune-mediated effects of local anesthetics against cancer[J]. Front Oncol, 2021, 11: 821785.
[34]
YOON J R, WHIPPLE R A, BALZER E M, et al. Local anesthetics inhibit kinesin motility and microtentacle protrusions in human epithelial and breast tumor cells[J]. Breast Cancer Res Treat, 2011, 129(3): 691-701. [DOI]
[35]
MAMMOTO T, HIGASHIYAMA S, MUKAI M, et al. Infiltration anesthetic lidocaine inhibits cancer cell invasion by modulating ectodomain shedding of heparin-binding epidermal growth factor-like growth factor (HB-EGF)[J]. J Cell Physiol, 2002, 192(3): 351-358. [DOI]
[36]
SAKAGUCHI M, KURODA Y, HIROSE M. The antiproliferative effect of lidocaine on human tongue cancer cells with inhibition of the activity of epidermal growth factor receptor[J]. Anesth Analg, 2006, 102(4): 1103-1107. [DOI]
[37]
PIEGELER T, VOTTA-VELIS E G, LIU G, et al. Antimetastatic potential of amide-linked local anesthetics: inhibition of lung adenocarcinoma cell migration and inflammatory Src signaling independent of sodium channel blockade[J]. Anesthesiology, 2012, 117(3): 548-559. [DOI]
[38]
QIN A, LIU Q, WANG J. Ropivacaine inhibits proliferation, invasion, migration and promotes apoptosis of papillary thyroid cancer cells via regulating ITGA2 expression[J]. Drug Dev Res, 2020, 81(6): 700-707. [DOI]
[39]
TADA M, IMAZEKI F, FUKAI K, et al. Procaine inhibits the proliferation and DNA methylation in human hepatoma cells[J]. Hepatol Int, 2007, 1(3): 355-364. [DOI]
[40]
VILLAR-GAREA A, FRAGA M F, ESPADA J, et al. Procaine is a DNA-demethylating agent with growth-inhibitory effects in human cancer cells[J]. Cancer Res, 2003, 63(16): 4984-4989.
[41]
CASTELLANO S, KUCK D, SALA M, et al. Constrained analogues of procaine as novel small molecule inhibitors of DNA methyltransferase-1[J]. J Med Chem, 2008, 51(7): 2321-2325. [DOI]
[42]
LI K, YANG J, HAN X. Lidocaine sensitizes the cytotoxicity of cisplatin in breast cancer cells via up-regulation of RARbeta2 and RASSF1A demethylation[J]. Int J Mol Sci, 2014, 15(12): 23519-23536. [DOI]
[43]
LI M, XIONG Z G. Ion channels as targets for cancer therapy[J]. Int J Physiol Pathophysiol Pharmacol, 2011, 3(2): 156-166.
[44]
LUCCHINETTI E, AWAD A E, RAHMAN M, et al. Antiproliferative effects of local anesthetics on mesenchymal stem cells: potential implications for tumor spreading and wound healing[J]. Anesthesiology, 2012, 116(4): 841-856. [DOI]
[45]
BAPTISTA-HON D T, ROBERTSON F M, ROBERTSON G B, et al. Potent inhibition by ropivacaine of metastatic colon cancer SW620 cell invasion and NaV1.5 channel function[J]. Br J Anaesth, 2014, 113 Suppl 1: i39-i48.
[46]
GUAY J, KOPP S. Epidural pain relief versus systemic opioid-based pain relief for abdominal aortic surgery[J]. Cochrane Database Syst Rev, 2016(1): CD005059.
[47]
TEDORE T. Regional anaesthesia and analgesia: relationship to cancer recurrence and survival[J]. Br J Anaesth, 2015, 115 Suppl 2: ii34-ii45.
[48]
ZHAO J, MO H. The impact of different anesthesia methods on stress reaction and immune function of the patients with gastric cancer during peri-operative period[J]. J Med Assoc Thai, 2015, 98(6): 568-573.
[49]
LI J M, SHAO J L, ZENG W J, et al. General/epidural anesthesia in combination preserves NK cell activity and affects cytokine response in cervical carcinoma patients undergoing radical resection: a cohort prospective study[J]. Eur J Gynaecol Oncol, 2015, 36(6): 703-707.
[50]
DESMOND F, MCCORMACK J, MULLIGAN N, et al. Effect of anaesthetic technique on immune cell infiltration in breast cancer: a follow-up pilot analysis of a prospective, randomised, investigator-masked study[J]. Anticancer Res, 2015, 35(3): 1311-1319.
[51]
LI M H, XU Z Z, HUANG S M, et al. Effect of combined epidural anaesthesia on tumor-infiltrating lymphocytes in lung adenocarcinoma: a prospective exploratory sub-analysis[J]. Acta Anaesthesiol Scand, 2018, 62(5): 687-700. [DOI]
[52]
MYLES P S, PEYTON P, SILBERT B, et al. Perioperative epidural analgesia for major abdominal surgery for cancer and recurrence-free survival: randomised trial[J]. BMJ, 2011, 342: d1491. [DOI]
[53]
SUN Y, LI T, GAN T J. The effects of perioperative regional anesthesia and analgesia on cancer recurrence and survival after oncology surgery: a systematic review and meta-analysis[J]. Reg Anesth Pain Med, 2015, 40(5): 589-598. [DOI]
[54]
XU Z Z, LI H J, LI M H, et al. Epidural anesthesia-analgesia and recurrence-free survival after lung cancer surgery: a randomized trial[J]. Anesthesiology, 2021, 135(3): 419-432. [DOI]
[55]
WU J, BUGGY D, FLEISCHMANN E, et al. Thoracic paravertebral regional anesthesia improves analgesia after breast cancer surgery: a randomized controlled multicentre clinical trial[J]. Can J Anaesth, 2015, 62(3): 241-251. [DOI]
[56]
BEAUSSIER M, DELBOS A, MAURICE-SZAMBURSKI A, et al. Perioperative use of intravenous lidocaine[J]. Drugs, 2018, 78(12): 1229-1246. [DOI]
[57]
RAMIREZ M F, TRAN P, CATA J P. The effect of clinically therapeutic plasma concentrations of lidocaine on natural killer cell cytotoxicity[J]. Reg Anesth Pain Med, 2015, 40(1): 43-48. [DOI]
[58]
ZHANG H, YANG L, ZHU X, et al. Association between intraoperative intravenous lidocaine infusion and survival in patients undergoing pancreatectomy for pancreatic cancer: a retrospective study[J]. Br J Anaesth, 2020, 125(2): 141-148. [DOI]
[59]
BRACK A, RITTNER H L, STEIN C. Immunosuppressive effects of opioids--clinical relevance[J]. J Neuroimmune Pharmacol, 2011, 6(4): 490-502. [DOI]
[60]
AFSHARIMANI B, DOORNEBAL C W, CABOT P J, et al. Comparison and analysis of the animal models used to study the effect of morphine on tumour growth and metastasis[J]. Br J Pharmacol, 2015, 172(2): 251-259. [DOI]
[61]
HOROWITZ M, NEEMAN E, SHARON E, et al. Exploiting the critical perioperative period to improve long-term cancer outcomes[J]. Nat Rev Clin Oncol, 2015, 12(4): 213-226. [DOI]
[62]
MATHEW B, LENNON F E, SIEGLER J, et al. The novel role of the mu opioid receptor in lung cancer progression: a laboratory investigation[J]. Anesth Analg, 2011, 112(3): 558-567. [DOI]
[63]
FUJIOKA N, NGUYEN J, CHEN C, et al. Morphine-induced epidermal growth factor pathway activation in non-small cell lung cancer[J]. Anesth Analg, 2011, 113(6): 1353-1364. [DOI]
[64]
ECIMOVIC P, MURRAY D, DORAN P, et al. Direct effect of morphine on breast cancer cell function in vitro: role of the NET1 gene[J]. Br J Anaesth, 2011, 107(6): 916-923. [DOI]
[65]
GACH K, WYREBSKA A, FICHNA J, et al. The role of morphine in regulation of cancer cell growth[J]. Naunyn Schmiedebergs Arch Pharmacol, 2011, 384(3): 221-230. [DOI]
[66]
FAROOQUI M, LI Y, ROGERS T, et al. COX-2 inhibitor celecoxib prevents chronic morphine-induced promotion of angiogenesis, tumour growth, metastasis and mortality, without compromising analgesia[J]. Br J Cancer, 2007, 97(11): 1523-1531. [DOI]
[67]
GABR M M, SAEED I, MILES J A, et al. Interaction of opioids with TLR4-Mechanisms and ramifications[J]. Cancers (Basel), 2021, 13(21): 5274. [DOI]
[68]
NGUYEN J, LUK K, VANG D, et al. Morphine stimulates cancer progression and mast cell activation and impairs survival in transgenic mice with breast cancer[J]. Br J Anaesth, 2014, 113 Suppl 1: i4-i13.
[69]
DAS J, KUMAR S, KHANNA S, et al. Are we causing the recurrence-impact of perioperative period on long-term cancer prognosis: review of current evidence and practice[J]. J Anaesthesiol Clin Pharmacol, 2014, 30(2): 153-159. [DOI]
[70]
KOODIE L, YUAN H, PUMPER J A, et al. Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice[J]. Am J Pathol, 2014, 184(4): 1073-1084. [DOI]
[71]
AFSHARIMANI B, BARAN J, WATANABE S, et al. Morphine and breast tumor metastasis: the role of matrix-degrading enzymes[J]. Clin Exp Metastasis, 2014, 31(2): 149-158. [DOI]
[72]
KHABBAZI S, GOUMON Y, PARAT M O. Morphine modulates interleukin-4- or breast cancer cell-induced pro-metastatic activation of macrophages[J]. Sci Rep, 2015, 5: 11389. [DOI]
[73]
FRIESEN C, HORMANN I, ROSCHER M, et al. Opioid receptor activation triggering downregulation of cAMP improves effectiveness of anti-cancer drugs in treatment of glioblastoma[J]. Cell Cycle, 2014, 13(10): 1560-1570. [DOI]
[74]
CRONIN-FENTON D P, HEIDE-JORGENSEN U, AHERN T P, et al. Opioids and breast cancer recurrence: a Danish population-based cohort study[J]. Cancer, 2015, 121(19): 3507-3514. [DOI]
[75]
GERTLER R, BROWN H C, MITCHELL D H, et al. Dexmedetomidine: a novel sedative-analgesic agent[J]. Proc (Bayl Univ Med Cent), 2001, 14(1): 13-21.
[76]
BAJWA S, KULSHRESTHA A. Dexmedetomidine: an adjuvant making large inroads into clinical practice[J]. Ann Med Health Sci Res, 2013, 3(4): 475-483. [DOI]
[77]
MARTIN E, RAMSAY G, MANTZ J, et al. The role of the alpha2-adrenoceptor agonist dexmedetomidine in postsurgical sedation in the intensive care unit[J]. J Intensive Care Med, 2003, 18(1): 29-41. [DOI]
[78]
LIU G, XU S, JIAO F, et al. Vascular endothelial growth factor B coordinates metastasis of non-small cell lung cancer[J]. Tumour Biol, 2015, 36(3): 2185-2191. [DOI]
[79]
CATA J P, SINGH V, LEE B M, et al. Intraoperative use of dexmedetomidine is associated with decreased overall survival after lung cancer surgery[J]. J Anaesthesiol Clin Pharmacol, 2017, 33(3): 317-323. [DOI]
[80]
LAVON H, MATZNER P, BENBENISHTY A, et al. Dexmedetomidine promotes metastasis in rodent models of breast, lung, and colon cancers[J]. Br J Anaesth, 2018, 120(1): 188-196. [DOI]
[81]
BENISH M, BARTAL I, GOLDFARB Y, et al. Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis[J]. Ann Surg Oncol, 2008, 15(7): 2042-2052. [DOI]
[82]
PATEL M I, SUBBARAMAIAH K, DU B, et al. Celecoxib inhibits prostate cancer growth: evidence of a cyclooxygenase-2-independent mechanism[J]. Clin Cancer Res, 2005, 11(5): 1999-2007. [DOI]
[83]
FORGET P, BENTIN C, MACHIELS J P, et al. Intraoperative use of ketorolac or diclofenac is associated with improved disease-free survival and overall survival in conservative breast cancer surgery[J]. Br J Anaesth, 2014, 113 Suppl 1: i82-i87.
[84]
FORGET P, TOMBAL B, SCHOLTES J L, et al. Do intraoperative analgesics influence oncological outcomes after radical prostatectomy for prostate cancer?[J]. Eur J Anaesthesiol, 2011, 28(12): 830-835. [DOI]
[85]
亚巴森. 顺式阿曲库铵与维库溴铵对人类离体肺癌细胞与肝癌细胞的影响[D]. 大连: 大连医科大学, 2015.
YABASIN I B. Effects of CIS atracurium and vecuronium on human lung cancer cells and liver cancer cells in vitro[D]. Dalian: Dalian Medical University, 2015.
[86]
JIANG A, ZHAO H, CAI J, et al. Possible Effect of muscle-relaxant anaesthetics on invasion, adhesion and migration of breast cancer cells[J]. Anticancer Res, 2016, 36(3): 1259-1265.
[87]
LIU X F. To compare the effects of different muscle relaxants on the growth, metastasis and invasion of gastric cancer cells[J]. Qingdao: Qingdao University, 2019.
[88]
CATA J P, WANG H, GOTTUMUKKALA V, et al. Inflammatory response, immunosuppression, and cancer recurrence after perioperative blood transfusions[J]. Br J Anaesth, 2013, 110(5): 690-701. [DOI]
[89]
BLAJCHMAN M A, BARDOSSY L, CARMEN R, et al. Allogeneic blood transfusion-induced enhancement of tumor growth: two animal models showing amelioration by leukodepletion and passive transfer using spleen cells[J]. Blood, 1993, 81(7): 1880-1882. [DOI]
[90]
ZDRAVKOVIC D, BILANOVIC D, RANDJELOVIC T, et al. Allogeneic blood transfusion in patients in Dukes B stage of colorectal cancer[J]. Med Oncol, 2011, 28(1): 170-174. [DOI]
[91]
TAI Y H, WU H L, MANDELL M S, et al. The association of allogeneic blood transfusion and the recurrence of hepatic cancer after surgical resection[J]. Anaesthesia, 2020, 75(4): 464-471. [DOI]
[92]
BEN-ELIYAHU S, SHAKHAR G, ROSENNE E, et al. Hypothermia in barbiturate-anesthetized rats suppresses natural killer cell activity and compromises resistance to tumor metastasis: a role for adrenergic mechanisms[J]. Anesthesiology, 1999, 91(3): 732-740. [DOI]
[93]
KURZ A, SESSLER D I, LENHARDT R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. Study of Wound Infection and Temperature Group[J]. N Engl J Med, 1996, 334(19): 1209-1215. [DOI]
[94]
DU G, LIU Y, LI J, et al. Hypothermic microenvironment plays a key role in tumor immune subversion[J]. Int Immunopharmacol, 2013, 17(2): 245-253. [DOI]
[95]
VAN POUCKE S, STEVENS K, MARCUS A E, et al. Hypothermia: effects on platelet function and hemostasis[J]. Thromb J, 2014, 12(1): 31. [DOI]

文章信息

引用本文
关昱, 仓静. 不同麻醉策略对肿瘤术后免疫抑制、复发及转移的影响[J]. 中国临床医学, 2022, 29(3): 504-513.
GUAN Yu, CANG Jing. Effects of different anesthesia strategies on postoperative immunosuppression, cancer recurrence and metastasis[J]. Chinese Journal of Clinical Medicine, 2022, 29(3): 504-513.
通信作者(Corresponding authors).
仓静, Tel: 021-64041990, E-mail: cang.jing@zs-hospital.sh.cn.
基金项目
上海市临床重点专科建设项目(shslczdzk03603)
Foundation item
Supported by Shanghai Municipal Key Clinical Specialty (shslczdzk03603)

工作空间