文章快速检索     高级检索
   中国临床医学  2021, Vol. 28 Issue (6): 1044-1049      DOI: 10.12025/j.issn.1008-6358.2021.20200763
0
间充质干细胞来源外泌体与肿瘤关系的研究进展
厉鹏飞 , 宋陆军     
复旦大学附属中山医院普通外科, 上海 200032
摘要:间充质干细胞(mesenchymal stem cells,MSCs)可产生大量外泌体。许多研究发现MSCs来源外泌体可调节肿瘤的增殖和凋亡、血管新生、肿瘤干细胞活性、侵袭与转移及肿瘤免疫,抑制肿瘤细胞增殖,且能提高肿瘤细胞对化疗的敏感性。本文对MSCs分泌的外泌体在肿瘤发生发展及肿瘤治疗过程中的作用进行综述。
关键词间充质干细胞    肿瘤    外泌体    治疗    
Research progress on the relationship between exosomes derived from mesenchymal stem cells and tumor
LI Peng-fei , SONG Lu-jun     
Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
Abstract: Mesenchymal stem cells (MSCs) can produce a large number of exosomes. Many studies have found that MSCs-derived exosomes play a role in regulating tumor proliferation, apoptosis, angiogenesis, tumor stem cell activity, tumor invasion and metastasis, and tumor immunity. Evidence showed that MSCs-derived exosomes inhibit tumor cell proliferation and increase tumor cell sensitivity to chemotherapy. This article reviews the role of exosomes secreted by MSCs in tumorigenesis and tumor treatment.
Key words: mesenchymal stem cells    tumor    exosomes    therapy    

间充质干细胞(mesenchymal stem cells, MSCs)是一种多能干细胞,有以下3种生物学特性:(1)在标准的培养条件下具有贴壁性;(2)高表达特殊的表面标志物,如CD73、CD90和CD105,同时低表达CD45、CD34、CD14、HLA-DR等其他类型细胞或干细胞标志物;(3)具有向三系细胞(包括软骨细胞、脂肪细胞及成骨细胞)分化的能力,还可以进一步发挥分化潜能,成为肌细胞和神经元等其他特殊类型的组织[1-4]。MSCs来源很广,可在骨髓、脂肪组织和牙髓中广泛出现,并且存在于循环系统中,在炎症发生时迁移到炎症部位发挥生物学效应[1, 5]。并且,由于MSCs能向受伤组织迁移,已被证实在多种组织包括肺、肝、脑和心脏履行修复职责[3]

外泌体是由细胞膜内陷与细胞膜融合后释放到胞外环境中的囊泡,直径一般为20~200 nm,由多种类型细胞分泌,具有丰富的来源和分布,CD9、CD63、CD81、CD82及TSG101为鉴定外泌体的常见标志分子[4, 6-8]。外泌体表面的双层脂质膜结构也可保护内容物不被细胞内的酶所分解,是细胞间进行物质交换和信息交互的重要途径[7]。其内容物丰富,包括多种蛋白及各种类型核酸分子等,参与细胞间信号转导和物质转运等生理过程[7, 9]

有研究[10]将重点从MSCs的自我更新和分化能力转移到其通过旁分泌途径发挥的生物学效应,特别是通过外泌体传递有免疫活性生物因子。这些因子也能减少细胞凋亡,促进血管生成。随着肿瘤研究的进一步开展,许多研究[3, 11]发现,MSCs也可迁移到原发性肿瘤并参与肿瘤微环境,直接影响肿瘤的活性或间接影响肿瘤基质,进而影响肿瘤细胞活性。MSCs外泌体包含的丰富核酸和蛋白质还可被转移到肿瘤原发部位的癌细胞中,被直接翻译后发挥生物学效应或靶向肿瘤细胞内的某个特定分子而发挥激活或沉默其表达的作用[7, 12-13];通过旁分泌途径分泌多种细胞因子或与邻近的肿瘤细胞直接接触,进而通过细胞间信号转导产生作用,并最终决定肿瘤的进展和命运[11, 14-17]。MSCs外泌体的独特性使其在肿瘤发生发展及肿瘤治疗领域得到越来越多的关注。本文将对近年来MSCs来源外泌体在肿瘤发生发展和肿瘤治疗过程中的作用进行综述[13-14, 18-19]

1 MSCs外泌体与肿瘤发生发展

已有研究[20]证实,癌症患者循环中的外泌体含量变化可能在一定程度上与其预后转归联系密切。MSCs作为人产生外泌体的重要来源,在越来越多的研究[11, 13-15, 20]中被证实可运载某些分子进入肿瘤细胞,调节肿瘤细胞增殖凋亡、血管新生、干细胞活性、肿瘤侵袭转移及肿瘤免疫。因此,研究MSCs外泌体对肿瘤的作用可加深对肿瘤发生发展的认识。

1.1 参与肿瘤细胞的增殖或凋亡的调节

大多数情况下,MSCs外泌体可被肿瘤原发部位的癌细胞捕获,其内的信号分子便与癌细胞中的增殖或凋亡相关信号结合,通过上调促凋亡信号分子(如Bax、Casp9和Casp3),下调抗凋亡蛋白(如Bcl-2)或促进癌基因的表达等,进而促进或抑制肿瘤进展[12-13, 18, 21-22]

脂肪间充质干细胞(adipose tissue-derived mesenchymal stem cells, AD-MSCs)外泌体中的miR-124-3p进入卵巢癌细胞后导致周期蛋白依赖性激酶(cyclin-dependent kinases, CDK),如CDK2、CDK4和CDK6下调,导致细胞周期S期停滞,最终抑制卵巢癌细胞增殖[12]。在前列腺癌中,AD-MSCs外泌体中的外源性TGF-β1和miR-145通过提高内源性TGF-β1和miR-145的表达量,从而通过激活Caspase-3/7途径,诱导前列腺癌细胞的凋亡,抑制肿瘤细胞的增殖。

Che等[13]研究发现,miR-143通过下调三叶因子3(trefoil factor 3, TFF3)的表达抑制前列腺癌进展。通过在骨髓间充质干细胞(bone marrow mesenchymal stem cells, BM-MSCs)中提高miR-143的表达量,将其转移到前列腺癌细胞中,降低TFF3的表达,能抑制前列腺癌细胞的增殖及侵袭。而在多发性骨髓瘤、胃癌和鼻咽癌中,MSCs外泌体在一定程度上促进癌症的进展[19, 23-24]。正常骨髓MSCs外泌体可抑制肿瘤细胞的生长,而在多发性骨髓瘤患者中,MSCs外泌体却促进肿瘤组织的生长[19]

总之,MSCs外泌体可通过介导与细胞周期相关分子的失调引起癌细胞周期的变化,影响癌细胞增殖,促进癌细胞内凋亡信号的表达,也可提高癌组织中致癌基因的表达,促进肿瘤进展[19]。而这种MSCs外泌体对癌细胞的调节作用可能由癌症类型和周围组织微环境及癌细胞的突变等多重因素决定,使其在不同肿瘤中发挥不同甚至相反的作用[12, 15, 19-20, 22, 25-28]

1.2 参与肿瘤血管新生的调节

与人体其他器官一样,在肿瘤发生过程中,MSCs外泌体自身也需有一个完善的血液供给系统来满足分裂增殖所需要的氧气和营养[29]。这主要通过血管新生来完成,是从已经存在的血管网络中进一步产生全新血管的过程。所以血管新生被认为是肿瘤进展不可或缺的一环。而低氧环境可促进癌细胞内低氧诱导因子1(hypoxia inducible factor-1, HIF-1)表达量提高,促进癌细胞分泌大量血管内皮生长因子(vascular endothelial growth factor, VEGF),并作用于其2个受体(VEGFR-1和VEGFR-2),促进肿瘤细胞周围血管的新生[14, 29-31]。mTOR信号通路在内皮细胞的增殖和血管生成中起关键作用,可与VEGF相互作用,调节VEGF表达能力。在乳腺癌中,MSCs衍生的外泌体将miR-100运送至乳腺癌细胞中,通过抑制乳腺癌细胞中的mTOR/HIF-1α/VEGF信号轴,使乳腺癌细胞向其周围微环境释放的VEGF含量显著降低,进而抑制内皮细胞的增殖和迁移速率[14]。MSCs衍生的外泌体通过上述机制调节肿瘤细胞中血管VEGF的表达,进而调节肿瘤周围的血管新生[14, 29]

1.3 参与肿瘤干细胞活性的调节

癌症干细胞(cancer stem cells, CSCs)是肿瘤组织中比例较小的一种具有干细胞活性的细胞。与其他干细胞一样,CSCs表达相似表面标志物并有自我更新的能力。但是与正常干细胞不同的是,CSCs有致癌活性,在体内可恶性增殖,导致肿瘤的发生[11, 17, 23, 32]。研究[6, 11, 16, 33]发现,MSCs衍生外泌体会影响肿瘤原发部位CSCs的干细胞活性,在不同肿瘤中增强或抑制其恶性增殖的能力,进一步调节肿瘤状态。在胃癌中,MSCs外泌体通过激活蛋白激酶B信号通路,提高胃癌干细胞的恶性增殖能力,进而增强离体胃癌细胞的致瘤性[23]。在结肠癌中,BM-MSCs衍生外泌体中的miR-142-3p通过下调Numb来促进与细胞增殖密切相关的Notch信号通路表达,进而增加结肠癌干细胞的数量,加速结肠癌的进展[11]

相反,在肝癌中,BM-MSCs来源的外泌体能逆转肝癌干细胞外泌体对肝癌增殖的促进作用,通过提高肝癌细胞中miR-21、lncRNATuc339、lncHEIH及lncHOTAIR等非编码RNA的表达,进而明显抑制体内肿瘤的发生和发展[16]。在乳腺癌中,BM-MSCs通过外泌体途径将miR-23b转移至乳腺肿瘤干细胞,通过调节细胞周期进一步维持乳腺癌细胞的休眠状态,从而抑制其活性[17]。MSCs外泌体对肿瘤干细胞活性的调节作用在不同肿瘤细胞中表现出矛盾性,这种差别一定程度上可能与肿瘤类型和所处微环境有关,很大程度上可能取决于MSCs来源的组织类型,但是具体原因有待于进一步研究[11, 16]

1.4 参与调节肿瘤细胞上皮间充质转化过程

肿瘤细胞迁移能力是癌细胞转移和侵袭周围正常组织的基础。研究[20, 23-24]发现,MSCs外泌体可提高癌细胞间充质标志物的表达并降低上皮标志物的表达,增加上皮间充质转化(epithelial-mesenchymal transition, EMT)的发生。而EMT的发生是肿瘤发生侵袭转移的基础,MSCs外泌体可促进EMT进行,进而导致肿瘤侵袭转移。对MSCs进行缺氧预处理,更好地还原MSCs处于癌症原发部位缺氧的状态,此时MSCs外泌体表现出对肺癌EMT过程更强的影响,促进肺癌的远距离转移。Zhang等[20]进一步对外泌体的miRNA表达谱进行分析,得到miR-193a-3p、miR-210-3p和miR-5100这3个与STAT3关联的关键miRNA,通过调节STAT3信号分子,进一步增强EMT相关的E-cadherin、N-cadherin、vimentin基因表达,发现MSCs外泌体中高表达的这些miRNA也可作为判断肿瘤预后的关键指标,将MSCs外泌体与肿瘤临床预后建立联系。

1.5 参与肿瘤免疫的调节

肿瘤相关巨噬细胞(tumor-associated macrophages, TAM)根据功能分为M1和M2两型,存在于肿瘤组织中。M1型主要产生抗肿瘤作用,M2型促进肿瘤生长、侵袭和转移[34]。在乳腺癌肿瘤微环境诱导下,MSCs分泌的外泌体包含TGF-β、C1q等信号分子,通过驱动未成熟的骨髓单核细胞前体和已定型的CD206阳性巨噬细胞中的PD-L1过表达,提高肿瘤部位的精氨酸酶活性和IL-10分泌,诱导单核细胞分化为M2型巨噬细胞,从而促进乳腺癌的进展[15]

2 MSCs外泌体在肿瘤治疗中的作用

由于外泌体的输注不会引起人体急性免疫排斥反应或直接导致肿瘤发生,越来越多的研究[26-27]把焦点集中在将外泌体用作目的分子转移的生物传递载体。通过将治疗性目的分子等掺入产生外泌体的细胞中,从其培养基中获得外泌体进而实现个性化治疗,而在已经了解到的可产生外泌体的各种细胞类型中,MSCs相对较容易获得且数量较多,成为外泌体肿瘤治疗的良好来源[26, 35]。在许多其他非肿瘤疾病模型中,将MSCs衍生的外泌体相应输注到患病部位后都产生了不错的治疗效果,且很少出现并发症[26, 36-37]。通过特异性高表达MSCs中存在的某一特定分子,或将需要的外源分子通过外泌体将其传递给肿瘤细胞,便可达到更好的治疗效果[26-27, 38-39]。通过外泌体可促进肿瘤细胞活力和降低侵袭性,也可解除肿瘤细胞的耐药性,提高其对化疗药物治疗的敏感程度[27, 40]

2.1 促进肿瘤细胞活力和降低其侵袭性

MSCs外泌体作为运载体,可传递各种miRNA、miRNA抑制剂及特定分子,进而促进肿瘤细胞活力并降低侵袭性[40-41]。用含miR-124a及miRNA-584的MSCs外泌体体外处理胶质瘤细胞,显著降低其活力和克隆性,进一步利用MSCs外泌体作为载体,依据其向损伤部位趋化的特点,应用于脑胶质瘤小鼠模型能延长其生存时间[40]。在乳腺癌中,miR-17-5p、miR-125a、miR-125b、miR-200、miR-205、miR-206、let-7、miR-34和miR-31被确定为抑癌基因,Vallabhaneni等[25]通过实验将miR-31和miR-205这2个非编码RNA通过外泌体转运的形式传递至乳腺癌细胞中,证明其可降低乳腺癌高风险及预后不良相关基因的表达,进而抑制体外乳腺癌细胞的增殖、迁移和侵袭。在包括胰腺癌、肝癌、肺癌、多发性骨髓瘤和黑素瘤在内的其他肿瘤中,MSCs外泌体作为运载体传递多种miRNA也在抑制肿瘤增殖和侵袭方面表现出了不错的治疗效果[38, 41-45]

2.2 解除肿瘤细胞的耐药性和提高其对化疗药物的敏感程度

MSCs外泌体也可用作药物或目的分子递送载体,解除肿瘤细胞的耐药性,提高其对化疗药物的敏感性[35, 46]。在肝癌中,Lou等[26]将miR-122转染到AMSCs内,可将miR-122有效地包装到外泌体中,从而介导AMSCs与肝癌细胞miR-122传递,改变miR-122目的基因表达,在体外进一步增强肝癌细胞对化疗药物敏感性;且肿瘤内注射含有miR-122的外泌体,显著增强了索拉非尼在体内对肝癌的抗肿瘤功效。Li等[38]通过在BM-MSCs过表达抑制GRP78的siRNA,并经由外泌体分泌,与索拉非尼结合后,能在肝癌细胞中靶向GRP78,提高肿瘤细胞对索拉菲尼的敏感性,在体内外都成功抑制肿瘤发展。在乳腺癌中,乳腺癌细胞会促进其周围的MSCs释放包含不同含量miRNA的外泌体,反过来增强部分癌细胞的耐药性。针对这些特定的miRNA,有研究[27]开发了载有这几种miRNA抑制基因的MSCs外泌体,靶向耐药的乳腺癌细胞,使耐药的乳腺癌小鼠模型对卡铂治疗的敏感性提高。

但当直接使用未经处理的MSCs外泌体探求其对肿瘤细胞耐药的影响时,外泌体的使用却提升了肿瘤细胞耐药性[27-28]。Ji等[28]提出,MSCs外泌体在体内和体外均显著诱导胃癌细胞对5-氟尿嘧啶的抗性,MSCs外泌体拮抗5-氟尿嘧啶诱导细胞凋亡作用,并增强多重耐药相关蛋白的表达,通过激活CaM-Ks/Raf/MEK/ERK途径来诱导胃癌细胞的耐药性。关于乳腺癌的研究[27]发现,MSCs外泌体会因周围肿瘤微环境的影响,释放特殊miRNA诱导肿瘤耐药性,便设计相应的siRNA通过外泌体传递进行治疗,成功逆转了耐药性的产生。所以,MSCs的外泌体可能只有在作为运载体传送特定目的基因时,才能稳定地解除肿瘤细胞的耐药性,提高其对化疗药物的敏感性;而当无特定分子高表达时,其自身可能会受肿瘤类型及肿瘤微环境的影响,表现出相对不稳定的作用[26-27]。虽然MSCs不能直接产生携带特定分子的外泌体,但可在外泌体中特定表达某一分子。利用外泌体传递特定药物和分子进行肿瘤的治疗,仍有非常好的应用前景[35, 43-47]

3 小结与展望

近年来,MSCs外泌体在肿瘤领域的研究[6, 11-13, 20, 29]越来越多。这些研究发现MSCs外泌体可通过参与肿瘤细胞增殖和凋亡,参与肿瘤血管生成,参与原发部位肿瘤干细胞活性及肿瘤免疫调节,参与肿瘤细胞EMT转变的调节等多种途径,影响肿瘤进展。将MSCs外泌体作为特定治疗药物的运载体,有望解决肿瘤细胞耐药的难题。本文从MSCs外泌体与肿瘤发生和MSCs外泌体与肿瘤治疗2个角度对MSCs外泌体与肿瘤的关系进行综述。未来还需要进一步明确:MSCs外泌体究竟是直接经循环进入肿瘤原发部位发挥作用,还是迁移至肿瘤原发部位后,受到肿瘤细胞刺激后发挥相应的生物学效应;MSCs外泌体为何会在不同肿瘤中表现出不同甚至相反的生物学效应;MSCs外泌体作为治疗的药物运载体进一步进行临床治疗的可能性如何等。

利益冲突:所有作者均声明不存在利益冲突

参考文献
[1]
PITTENGE M F, MACKAY A M, BECK S C, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147. [DOI]
[2]
DOMINICI M, LE BLANC K, MUELLER I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement[J]. Cytotherapy, 2006, 8(4): 315-317. [DOI]
[3]
RIDGE S M, SULLIVAN F J, GLYNN S A. Mesenchymal stem cells: key players in cancer progression[J]. Mol Cancer, 2017, 16(1): 31. [DOI]
[4]
WANG S, SU X, XU M, et al. Exosomes secreted by mesenchymal stromal/stem cell-derived adipocytes promote breast cancer cell growth via activation of Hippo signaling pathway[J]. Stem Cell Res Ther, 2019, 10(1): 117. [DOI]
[5]
CHAMBERLAIN G, FOX J, ASHTON B, et al. Concise review: mesenchymal stem cells: their phenotype, differentiation capacity, immunological features, and potential for homing[J]. Stem Cells, 2007, 25(11): 2739-2749. [DOI]
[6]
PHINNEY D G, PITTENGER M F. Concise review: MSC-derived exosomes for cell-free therapy[J]. Stem Cells, 2017, 35(4): 851-858. [DOI]
[7]
RUIVO C F, ADEM B, SILVA M, et al. The biology of cancer exosomes: insights and new perspectives[J]. Cancer Res, 2017, 77(23): 6480-6488. [DOI]
[8]
ZHAO C, GAO F, WENG S, et al. Pancreatic cancer and associated exosomes[J]. Cancer Biomark, 2017, 20(4): 357-367. [DOI]
[9]
STEINBICHLER T B, DUDÁS J, RIECHELMANN H, et al. The role of exosomes in cancer metastasis[J]. Semin Cancer Biol, 2017, 44: 170-181. [DOI]
[10]
MAROTE A, TEIXEIRA F G, MENDES-PINHEIRO B, et al. MSCs-derived exosomes: cell-secreted nanovesicles with regenerative potential[J]. Front Pharmacol, 2016, 7: 231.
[11]
LI H, LI F. Exosomes from BM-MSCs increase the population of CSCs via transfer of miR-142-3p[J]. Br J Cancer, 2018, 119(6): 744-755. [DOI]
[12]
REZA A M M T, CHOI Y J, YASUDA H, et al. Human adipose mesenchymal stem cell-derived exosomal-miRNAs are critical factors for inducing anti-proliferation signalling to A2780 and SKOV-3 ovarian cancer cells[J]. Sci Rep, 2016, 6: 38498. [DOI]
[13]
CHE Y, SHI X, SHI Y, et al. Exosomes derived from miR-143-overexpressing MSCs inhibit cell migration and invasion in human prostate cancer by downregulating TFF3[J]. Mol Ther Nucleic Acids, 2019, 18: 232-244. [DOI]
[14]
PAKRAVAN K, BABASHAH S, SADEGHIZADEH M, et al. MicroRNA-100 shuttled by mesenchymal stem cell-derived exosomes suppresses in vitro angiogenesis through modulating the mTOR/HIF-1α/VEGF signaling axis in breast cancer cells[J]. Cell Oncol (Dordr), 2017, 40(5): 457-470.
[15]
BISWAS S, MANDAL G, ROY CHOWDHURY S, et al. Exosomes produced by mesenchymal stem cells drive differentiation of myeloid cells into immunosuppressive M2-polarized macrophages in breast cancer[J]. J Immunol, 2019, 203(12): 3447-3460. [DOI]
[16]
ALZAHRANI F A, EL-MAGD M A, ABDELFATTAH-HASSAN A, et al. Potential effect of exosomes derived from cancer stem cells and MSCs on progression of DEN-induced HCC in rats[J]. Stem Cells Int, 2018, 2018: 8058979.
[17]
ONO M, KOSAKA N, TOMINAGA N, et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells[J]. Sci Signal, 2014, 7(332): ra63.
[18]
TAKAHARA K, II M, INAMOTO T, et al. MicroRNA-145 mediates the inhibitory effect of adipose tissue-derived stromal cells on prostate cancer[J]. Stem Cells Dev, 2016, 25(17): 1290-1298. [DOI]
[19]
ROCCARO A M, SACCO A, MAISO P, et al. BM mesenchymal stromal cell-derived exosomes facilitate multiple myeloma progression[J]. J Clin Invest, 2013, 123(4): 1542-1555. [DOI]
[20]
ZHANG X, SAI B, WANG F, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT[J]. Mol Cancer, 2019, 18(1): 40. [DOI]
[21]
KATAKOWSKI M, BULLER B, ZHENG X, et al. Exosomes from marrow stromal cells expressing miR-146b inhibit glioma growth[J]. Cancer Lett, 2013, 335(1): 201-204. [DOI]
[22]
ZHU W, HUANG L, LI Y, et al. Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth in vivo[J]. Cancer Lett, 2012, 315(1): 28-37. [DOI]
[23]
GU H, JI R, ZHANG X, et al. Exosomes derived from human mesenchymal stem cells promote gastric cancer cell growth and migration via the activation of the Akt pathway[J]. Mol Med Rep, 2016, 14(4): 3452-3458. [DOI]
[24]
SHI S, ZHANG Q, XIA Y, et al. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression[J]. Am J Cancer Res, 2016, 6(2): 459-472.
[25]
VALLABHANENI K C, PENFORNIS P, XING F, et al. Stromal cell extracellular vesicular cargo mediated regulation of breast cancer cell metastasis via ubiquitin conjugating enzyme E2 N pathway[J]. Oncotarget, 2017, 8(66): 109861-109876. [DOI]
[26]
LOU G, SONG X, YANG F, et al. Exosomes derived from miR-122-modified adipose tissue-derived MSCs increase chemosensitivity of hepatocellular carcinoma[J]. J Hematol Oncol, 2015, 8: 122. [DOI]
[27]
BLISS S A, SINHA G, SANDIFORD O A, et al. Mesenchymal stem cell-derived exosomes stimulate cycling quiescence and early breast cancer dormancy in bone marrow[J]. Cancer Res, 2016, 76(19): 5832-5844. [DOI]
[28]
JI R, ZHANG B, ZHANG X, et al. Exosomes derived from human mesenchymal stem cells confer drug resistance in gastric cancer[J]. Cell Cycle, 2015, 14(15): 2473-2483. [DOI]
[29]
WEIS S M, CHERESH D A. Tumor angiogenesis: molecular pathways and therapeutic targets[J]. Nat Med, 2011, 17(11): 1359-1370. [DOI]
[30]
ANDERSON J D, JOHANSSON H J, GRAHAM C S, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear factor-κB signaling[J]. Stem Cells, 2016, 34(3): 601-613. [DOI]
[31]
MERINO-GONZÁLEZ C, ZUÑIGA F A, ESCUDERO C, et al. Mesenchymal stem cell-derived extracellular vesicles promote angiogenesis: potencial clinical application[J]. Front Physiol, 2016, 7: 24.
[32]
DAWOOD S, AUSTIN L, CRISTOFANILLI M. Cancer stem cells: implications for cancer therapy[J]. Oncology (Williston Park), 2014, 28(12): 1101-1107, 1110.
[33]
PAVON L F, SIBOV T T, DE SOUZA A V, et al. Tropism of mesenchymal stem cell toward CD133+stem cell of glioblastoma in vitro and promote tumor proliferation in vivo[J]. Stem Cell Res Ther, 2018, 9(1): 310. [DOI]
[34]
吴婷, 周武雄. 肿瘤相关巨噬细胞的极化与肿瘤的发展[J]. 现代肿瘤医学, 2015, 23(12): 1753-1756.
WU T, ZHOU W X. The polarization of tumor associated macrophages and tumor progression[J]. Journal of Modern Oncology, 2015, 23(12): 1753-1756. [DOI]
[35]
KALIMUTHU S, GANGADARAN P, RAJENDRAN R L, et al. A new approach for loading anticancer drugs into mesenchymal stem cell-derived exosome mimetics for cancer therapy[J]. Front Pharmacol, 2018, 9: 1116. [DOI]
[36]
LAI R C, ARSLAN F, LEE M M, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury[J]. Stem Cell Res, 2010, 4(3): 214-222. [DOI]
[37]
KATSUDA T, KOSAKA N, TAKESHITA F, et al. The therapeutic potential of mesenchymal stem cell-derived extracellular vesicles[J]. Proteomics, 2013, 13(10-11): 1637-1653. [DOI]
[38]
LI H, YANG C, SHI Y, et al. Exosomes derived from siRNA against GRP78 modified bone-marrow-derived mesenchymal stem cells suppress Sorafenib resistance in hepatocellular carcinoma[J]. J Nanobiotechnology, 2018, 16(1): 103. [DOI]
[39]
PASCUCCI L, COCCō V, BONOMI A, et al. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery[J]. J Control Release, 2014, 192: 262-270. [DOI]
[40]
KIM R, LEE S, LEE J, et al. Exosomes derived from microRNA-584 transfected mesenchymal stem cells: novel alternative therapeutic vehicles for cancer therapy[J]. BMB Rep, 2018, 51(8): 406-411. [DOI]
[41]
NASERI Z, OSKUEE R K, JAAFARI M R, et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo[J]. Int J Nanomedicine, 2018, 13: 7727-7747. [DOI]
[42]
ZHAO X, WU X, QIAN M, et al. Knockdown of TGF-β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome-mediated EMT promoting effect on lung cancer cells[J]. Cancer Lett, 2018, 428: 34-44. [DOI]
[43]
XU H, HAN H, SONG S, et al. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma[J]. Clin Cancer Res, 2019, 25(6): 1923-1935. [DOI]
[44]
SHANG S, WANG J, CHEN S, et al. Exosomal miRNA-1231 derived from bone marrow mesenchymal stem cells inhibits the activity of pancreatic cancer[J]. Cancer Med, 2019, 8(18): 7728-7740. [DOI]
[45]
SHAMILI F H, BAYEGI H R, SALMASI Z, et al. Exosomes derived from TRAIL-engineered mesenchymal stem cells with effective anti-tumor activity in a mouse melanoma model[J]. Int J Pharm, 2018, 549(1-2): 218-229. [DOI]
[46]
MUNOZ J L, BLISS S A, GRECO S J, et al. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity[J]. Mol Ther Nucleic Acids, 2013, 2: e126. [DOI]
[47]
杨紫恩, 赵继凯, 于卉影. 间充质干细胞来源外泌体生物学功能及对肿瘤调控作用研究现状[J]. 临床军医杂志, 2020, 48(11): 1386-1388.
YANG Z E, ZHAO J K, YU H Y. Current research status of the biological functions of exosomes derived from mesenchymal stem cells and their regulatory effects on tumors[J]. Clinical Journal of Medical Officers, 2020, 48(11): 1386-1388. [CNKI]

文章信息

引用本文
厉鹏飞, 宋陆军. 间充质干细胞来源外泌体与肿瘤关系的研究进展[J]. 中国临床医学, 2021, 28(6): 1044-1049.
LI Peng-fei, SONG Lu-jun. Research progress on the relationship between exosomes derived from mesenchymal stem cells and tumor[J]. Chinese Journal of Clinical Medicine, 2021, 28(6): 1044-1049.
通信作者(Corresponding authors).
宋陆军, Tel: 021-64041990, E-mail: song.lujun@zs-hospital.sh.cn.
基金项目
复旦大学附属中山医院院内科研课题(2016ZSFZ43)
Foundation item
Supported by Research Project of Zhongshan Hospital, Fudan University (2016ZSFZ43)

工作空间