文章快速检索     高级检索
   中国临床医学  2021, Vol. 28 Issue (3): 402-407      DOI: 10.12025/j.issn.1008-6358.2021.20210519
0
超声心动图及二维斑点追踪评估心房颤动对左心房形态及功能的影响
王亚男 , 赵盈洁 , 程羽菲 , 陈海燕 , 舒先红     
复旦大学附属中山医院心脏超声诊断科, 上海市心血管病研究所, 上海市影像医学研究所, 上海 200032
摘要目的: 应用超声心动图及二维斑点追踪技术评估非瓣膜病性房颤的左心房形态及功能变化,并探讨超声心动图参数对隐匿的阵发性房颤的辅助诊断价值。方法: 顺序入组2020年7月24日至2020年8月5日复旦大学附属中山医院收治的非瓣膜病性房颤患者62例,根据行超声心动图检查时为窦性心律或房颤心律分为房颤窦律组(n=32)和房颤组(n=30),另选30例健康对照,在机测量左心房最大容积(left atrial maximum volume,LAVmax)、最小容积(left atrial minimum volume,LAVmin)、左心房排空分数(left atrial emptying fraction,LAEF)、左心房容积指数(left atrial volume index,LAVI),使用Qlab软件脱机测量左心房存储应变(left atrial reservoir strain,LASr)、通道应变(left atrial conduct strain,LAScd)、收缩应变(left atrial contraction strain,LASct)。结果: LAVmax、LAVmin、LAVI在对照组、房颤窦律组、房颤组逐渐增大,LASr则逐渐减小(均P < 0.05);房颤窦律组和房颤组LAScd较对照组显著降低(P < 0.05),但房颤窦律组与房颤组间差异无统计学意义。LAVmin:截断值22.3 mL,灵敏度0.625,特异度0.889,AUC 0.793;LAScd:截断值-19.93%,灵敏度0.813,特异度0.852,AUC 0.826,LAVmin和LAScd对于阵发性房颤具有较好的诊断价值。LAEF:截断值62.95%,灵敏度0.741,特异度0.875,AUC 0.840;LASr:截断值32.73%,灵敏度0.889,特异度0.750,AUC 0.880,LAEF和LASr对于阵发性房颤具有较好的排除价值。结论: 房颤窦律组、房颤组的左心房容积较对照组逐渐增大,LAEF及LASr则逐渐降低。超声评估的左心房形态及功能参数,尤其是LAVmin、LAScd、LAEF和LASr有助于窦性心律受检者阵发性房颤的诊断与排除。
关键词二维斑点追踪技术    房颤    应变    心房功能    
Using echocardiography and two-dimensional speckle tracking to evaluate the influence of atrial fibrillation on the shape and function of the left atrium
WANG Ya-nan , ZHAO Ying-jie , CHENG Yu-fei , CHEN Hai-yan , SHU Xian-hong     
Department of Echocardiography, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Shanghai 200032, China
Abstract: Objective: To evaluate the morphological and functional changes of the left atrium of non-valvular atrial fibrillation using echocardiography and two-dimensional speckle tracking (2D-STI), and to explore the value of echocardiographic parameters in the diagnosis of paroxysmal atrial fibrillation. Methods: Sixty-two patients with atrial fibrillation of Zhongshan Hospital, Fudan University (32 patients with sinus rhythm during echocardiography as atrial fibrillation sinus rhythm group, AFsinus group; 30 patients with atrial fibrillation rhythm during the examination as atrial fibrillation group, AF group) and 30 healthy volunteers (control group) were enrolled sequentially from July to August 2020. Echocardiography was performed to measure left atrial maximum volume (LAVmax), minimum volume (LAVmin), volume index (LAVI), and left atrial emptying fraction (LAEF). 2D-STI was performed to measure left atrial reservoir strain (LASr), left atrial conduct strain (LAScd), and left atrial contraction strain (LASct). Results: LAVmax, LAVmin, LAVI, and LASr showed gradient changes among the three groups (all P < 0.05). LAScd in the disease groups was significantly lower than that in the control group (P < 0.05), but there was no significant difference between the AFsinus group and the AF group. LAVmin: cut-off value 22.3 ml, sensitivity 0.625, specificity 0.889, AUC 0.793; LAScd: cut-off value -19.93%, sensitivity 0.8125, specificity 0.8519, AUC 0.826, LAVmin and LAScd have good diagnostic value for paroxysmal atrial fibrillation. LAEF: cut-off value 62.95%, sensitivity 0.741, specificity 0.875, AUC 0.840; LASr: cut-off value 32.73%, sensitivity 0.889, specificity 0.750, AUC 0.880, LAEF and LASr have good exclusion value for paroxysmal atrial fibrillation. Conclusions: Left atrial volume increases progressively with the progression of atrial fibrillation, while the LAEF and LASr decrease progressively. The morphological and functional parameters of the left atrium evaluated by echocardiography, especially LAVmin, LAScd, LAEF, and LASr, are helpful in the diagnosis and elimination of paroxysmal atrial fibrillation in sinus rhythm subjects.
Key words: two-dimensional speckle tracking technology    atrial fibrillation    strain    atrial function    

心房颤动(atrial fibrillation,AF),简称房颤,是临床最为常见的心律失常之一,在成年人中患病率为2%~4%[1],且随年龄增长而增加,在大于80岁人群中为5%~15%[2-3]。房颤会明显提高患者血栓及栓塞风险,引起脑卒中、心衰等严重影响生活质量的疾病[4-6]。然而,阵发性房颤因可自行转复为窦性心律,需要发作时的心电图方可诊断,容易漏诊。在房颤发展过程中,会出现进行性心房增大、心肌重构等现象,影响心房及心室功能[7]。斑点追踪测定心肌应变是用于评价心肌形变及功能的新方法,既往也被套用于左心房的功能分析[8]。本研究拟应用针对左心房的最新分析软件评估左心房应变,探讨其能否识别不同病程阶段心房重构导致的心房壁应变损伤,提高阵发性房颤的诊断准确性。

1 资料与方法 1.1 研究对象

顺序入组2020年7月24日至2020年8月5日复旦大学附属中山医院收治的非瓣膜病性房颤患者62例,根据行超声心动图检查时为窦性心律或房颤心律分为房颤窦律组(n=32)及房颤组(n=30),其中男性47例,女性15例,年龄31~80(60.3±11.7)岁。

纳入标准:(1)年龄18岁以上;(2)有心电图或动态心电图的房颤诊断依据。排除标准:(1)先天性心脏病;(2)心脏瓣膜病;(3)冠脉粥样硬化性心脏病;(4)既往心脏手术史;(5)透声条件较差者。同时选择30例无心血管疾病的志愿者作为对照组,其中男性19例,女性11例,年龄22~67(44.9±11.6)岁。本研究经复旦大学附属中山医院伦理委员会批准(B2021-334),所有患者均知情并签署知情同意书。

1.2 仪器与方法

使用Philips EPIQ7C超声诊断仪,S5-1探头(频率1~5 MHz)。受检者记录身高、体质量,取左侧卧位,连接心电图,采集心尖四腔观、心尖二腔观、心尖长轴观二维动态图像,所有图像均采集连续5个心动周期并测量相关参数。(1)心房形态参数:采用双平面Simpson法测量左心房最大容积(left atrial maximum volume,LAVmax)、最小容积(left atrial minimum volume,LAVmin)及排空分数(left atrial emptying fraction,LAEF)。(2)心房功能参数:采用Qlab脱机分析软件-自动左心房应变(Auto LA Strain)测量模块进行心房应变参数测量,见图 1

图 1 采用Qlab软件测量左心房应变 A:对照组;B:房颤窦律组;C:房颤组. LASr_ED: 左心房存储应变;LAScd_ED: 左心房通道应变;LASct_ED: 左心房收缩应变。

软件自动追踪左心房房壁结构,必要时手动调整直至所有房壁追踪满意。左心房应变以时间-应变曲线及测量值形式呈现,分为存储应变(left atrial reservoir strain, LASr)、通道应变(left atrial conduct strain, LAScd)、收缩应变(left atrial contraction strain, LASct)。存储应变,即存储期应变,指二尖瓣开放与左室舒张末期应变值之差,为正值;通道应变,即通道期应变,为左心房收缩起始与二尖瓣开放应变值之差,为负值;收缩应变:即收缩期应变,为左室舒张末期与左心房收缩起始应变值之差,为负值。指南[9]规定房颤患者心房应变测量应以舒张末期为参照点,故本研究所有受检者的测量均采用舒张末期作为参照点。所有应变值测量连续5个心动周期取平均值。

1.3 重复性分析

随机选取10例窦性心律及10例房颤心律受检者进行重复性分析:观察者内一致性分析由同一检查者间隔2个月分别测量完成;观察者间一致性分析由2位检查者分别测量完成。观察者内及观察者间一致性检验使用组内相关系数(intra class correlation coefficients,ICC)表示。1.4统计学处理采用SPSS 25.0软件进行统计学分析,符合正态分布的计量资料以x±s表示,采用独立样本t检验,计数资料以n(%)表示。采用单因素方差分析比较3组及以上变量。一致性检验使用ICC表示。采用ROC曲线进行诊断试验。检验水准(α)为0.05。

2 结果 2.1 一般资料分析

结果(表 1)显示:共纳入92例患者,其中对照组30例;房颤窦律组32例,均为阵发性房颤,病程为1周至20年;房颤组30例,28例为持续性房颤,2例为阵发性房颤发作,病程9 d至20年。

表 1 3组患者的一般情况比较
指标 对照组(n=30) 房颤窦律组(n=32) 房颤组(n=30)
男性n(%) 19(63.3) 22(68.8) 25(83.3)
年龄/岁 44.9±11.6 60.3±12.3*** 60.3±11.3***
收缩压/mmHg 138.5±22.5 130.4±21.7 129.5±16.2
舒张压/mmHg 85.6±8.0 81.0±10.3 84.1±12.0
高血压病史n(%) 0(0) 11(34.4)*** 15(50.0)***
糖尿病史n(%) 0(0) 2(6.3) 4(13.3)
脑卒中或腔隙性脑梗死史n(%) 0(0) 6(18.8) 3(10.0)
1 mmHg=0.133 kPa; *P < 0.05与对照组相比, **P < 0.01与对照组相比, ***P < 0.001与对照组相比。
2.2 左心房形态及功能参数比较

结果(表 2)显示:房颤窦律组、房颤组左心房容积(LAVmax、LAVmin)较对照组显著增大,且房颤组>房颤窦律组>对照组,使用体表面积校正左心房容积指数(left atrial volume index,LAVI)后这一梯度仍然具有统计学意义。LAEF则逐渐下降(房颤组 < 房颤窦律组 < 对照组)。

表 2 3组患者左心房容积及功能比较
指标 对照组(n=30) 房颤窦律组(n=32) 房颤组(n=30)
LAVmax/mL 40.7 ±11.8 52.3±19.5* 72.8±25.9***###
LAVmin/mL 13.9±5.8 26.2±15.4** 49.7±23.7***###
LAVI/(mL·m-2) 23.6±5.9 29.4±11.5* 40.0±14.8***##
LAEF/% 66.5±6.5 52.3±13.3*** 33.9±12.3***###
LASr/% 42.43±7.32 29.19±8.23*** 14.67±5.74***###
LAScd/% -26.41±8.17 -17.14±7.20*** -15.15±7.34***
LASct/% -16.15±6.15 -12.06±5.20** 0.60±2.82***###
LAVI:左心房容积指数;LAVmax:左心房最大容积;LAVmin:左心房最小容积;LAScd:左心房通道应变;LASct:左心房收缩应变;LAEF:左心房排空分数;LASr:左心房存储应变。*P < 0.05与对照组相比;**P < 0.01与对照组相比;***P < 0.001与对照组相比; #P < 0.05与房颤窦律组相比;##P < 0.01与房颤窦律组相比;###P < 0.001与房颤窦律组相比。

LASr在3组间呈现梯度减小趋势(房颤组 < 房颤窦律组 < 对照组,P < 0.05);房颤窦律组和房颤组LAScd显著小于对照组,但2组间差异无统计学意义;房颤窦律组LASct也较对照组显著降低;由于房颤时心房不具有收缩功能,按指南规定,对房颤组LASct不予评估。

2.3 心房形态及功能参数对阵发性房颤的诊断价值

结果(图 2)显示:LAVmin:截断值22.3 mL,特异度88.9%,灵敏度62.5%,AUC 0.793;LAScd: 截断值-19.93%,特异度81.3%,灵敏度85.2%,AUC 0.826。LAEF: 截断值62.95%,灵敏度74.1%,特异度87.5%,AUC 0.840;LASr:截断值32.73%,灵敏度88.9%、特异度75.0%,AUC 0.880。

图 2 左心房参数诊断阵发性房颤(A)和参数排除阵发性房颤(B)的ROC曲线 LAVI:左心房容积指数;LAVmax:左心房最大容积;LAVmin:左心房最小容积;LAScd:左心房通道应变;LASct:左心房收缩应变;LAEF:左心房排空分数;LASr:左心房存储应变。
2.4 重复性分析

LASr、LAScd及LASct的观察者内ICC分别为0.972(95%CI 0.932~0.989),0.949(95%CI 0.876~0.979)和0.977(95%CI 0.942~0.991)。LASr、LAScd及LASct测量的观察者间ICC分别0.946(95%CI 0.870~0.978),0.874(95%CI 0.710~0.948)和0.943(95%CI 0.789~0.986),均P < 0.001。

3 讨论

房颤是最为常见的心律失常,可导致卒中[4]、栓塞[5]、心衰[6, 10]等并发症,显著影响患者生活质量,并增加死亡率[11-12]。左心房重构是房颤的典型病理生理改变。多种病因作用于心房肌和细胞外间质,反应性胶原纤维沉积导致房壁纤维化[13],左心房纤维化和扩张引起结构重构,进而产生电重构,导致阵发性房颤[14-16];纤维化持续进展,最终导致持续性房颤[17]。心脏磁共振钆显像是确定心房纤维化的重要诊断方法[18]。Kuppahally等[19]研究表明,延迟增强磁共振显示左心房纤维化与左心房应变负相关,并与房颤负荷有关。然而,磁共振价格昂贵,钆显像也有不良反应,尤其在肾功能不全患者中不宜使用[20]。斑点追踪技术可以追踪心动周期中超声二维灰阶斑点的位置变化,从而评价局部心肌的形变能力[21]。在接受外科手术治疗的重度二尖瓣反流患者中,左心房形变相关指标尤其是左心房纵向应变与左心房纤维化分级显著负相关,是左心房纤维化强有力的独立预测因子,并与左心房心内膜厚度负相关,提示左心房纵向形变的异常与其纤维化和重塑的程度密切相关[22]。EACVI/EHRA关于房颤的专家共识文件[23]也指出了左心房应变是非常具有前景的指标。

然而,由于缺乏对应的软件,左心房应变的分析通常套用左心室应变分析软件进行[8],但左心房形态及心肌特征与左心室存在较大的差异。本研究采用左心房针对性应变分析模块,该模块基于人工智能技术,通过对超声大数据库深度学习强化了针对左心房结构及房壁识别的能力。软件能够准确追踪左心房壁,重建其运动轨迹,并根据在不同时相(存储期、通道期、收缩期)发生的形变自动计算相应应变(LASr、LAScd、LASct)。本研究显示使用其进行左心房纵向应变的测试具有较好的重复性,LASr、LAScd、LASct的观察者内及观察者间内部相关系数ICC大多接近或超过95%。

本研究发现左心房功能相关指标LASr、LAEF在对照组、房颤窦律组及房颤组间呈梯度性下降;左心房结构相关指标LAVmax、LAVmin及LAVI在3组间呈梯度性增大,这与房颤时心房重构的进行性加重相符。而尽管房颤患者LAScd较对照组显著降低,在房颤窦律组与房颤组间差异无统计学意义,这表明LAScd先于LASr、LAEF以及左心房结构相关指标LAVmax、LAVmin及LAVI,在阵发性房颤的时期已经受损。此外,LASct也在阵发性房颤时期就已受损,而房颤心律时因心房不具有收缩功能,因此对于持续性房颤患者LASct不做评估。

研究[24]表明,在老年患者中心房容积越大房颤发生风险越高,其中心房最小容积的大小是发生房颤的独立预测因子。本研究发现窦性心律的样本中,LAVmin具有较好的阳性预测价值。尽管LAVmin是一项体现左心房结构功能的指标,但其受到左心房排空能力的影响,即同样大小的LAVmax,排空能力越强,LAVmin越小,反之LAVmin越大。因此LAVmin的增大不仅反映了心房增大的结构变化,也反映了心房收缩的功能变化。此外,在房颤病程较早期受损的LAScd对阵发性房颤也具有较好的阳性预测价值;而较晚受损的LAEF和LASr则具有较好的阴性预测价值。

本研究存在一定的局限性:(1)样本量较小;(2)仅使用新软件测量左心房应变,未与传统的套用左心室应变的方法比较以证明其准确性;后续将扩大样本量,并进行进一步的对比研究。

综上所述,超声斑点追踪技术评估左心房应变具有较好的重复性。通过超声斑点追踪技术评估的左心房功能变化结合二维超声评估的左心房结构变化能够反映不同病程阶段房颤的心房特征。LAVmin、LAScd可用于辅助发现阵发性房颤的可能,LAEF和LASr可用于辅助排除阵发性房颤的可能。

参考文献
[1]
HINDRICKS G, POTPARA T, DAGRES N, et al. 2020 ESC guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS)[J]. European Heart Journal, 2021, 42(5): 373-498. [URI]
[2]
黄从新, 张澍, 黄德嘉, 等. 心房颤动: 目前的认识和治疗的建议-2018[J]. 中国心脏起搏与心电生理杂志, 2018, 32(4): 315-368.
HUANG C X, ZHANG S, HUANG D J, et al. Current knavledge and management recommendations of atrial fibrillation: 2018[J]. Chinese Journal of Cardiac Arrhythmias, 2018, 32(4): 315-368. [CNKI]
[3]
CAMM A J, KIRCHHOF P, LIP G Y H, et al. Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC)[J]. Europace, 2010, 12(10): 1360-1420. [DOI]
[4]
KIRCHHOF P, AURICCHIO A, BAX J, et al. Outcome parameters for trials in atrial fibrillation: executive summary: recommendations from a consensus conference organized by the German Atrial Fibrillation Competence NETwork (AFNET) and the European Heart Rhythm Association (EHRA)[J]. Europace, 2007, 9(11): 1006-1023. [DOI]
[5]
HEALEY J S, CONNOLLY S J. Atrial fibrillation: hypertension as a causative agent, risk factor for complications, and potential therapeutic target[J]. Am J Cardiol, 2003, 91(10): 9-14. [DOI]
[6]
LUBITZ S A, BENJAMIN E J, ELLINOR P T. Atrial fibrillation in congestive heart failure[J]. Heart Fail Clin, 2010, 6(2): 187-200. [DOI]
[7]
GOETTE A, KALMAN J M, AGUINAGA L, et al. EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication[J]. Europace, 2016, 18(10): 1455-1490. [DOI]
[8]
CAMELI M, LISI M, RIGHINI F M, et al. Novel echocardiographic techniques to assess left atrial size, anatomy and function[J]. Cardiovasc Ultrasound, 2012, 10(1): 4. [DOI]
[9]
BADANO L P, KOLIAS T J, MURARU D, et al. Standardization of left atrial, right ventricular, and right atrial deformation imaging using two-dimensional speckle tracking echocardiography: a consensus document of the EACVI/ASE/Industry Task Force to standardize deformation imaging[J]. Eur Heart J Cardiovasc Imaging, 2018, 19(6): 591-600. [DOI]
[10]
ANTER E, JESSUP M, CALLANS D J. Atrial fibrillation and heart failure: treatment considerations for a dual epidemic[J]. Circulation, 2009, 119(18): 2516-2525. [DOI]
[11]
BENJAMIN E J, WOLF P A, D'AGOSTINO R B, et al. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study[J]. Circulation, 1998, 98(10): 946-952. [DOI]
[12]
JOUVEN X, DESNOS M, GUEROT C, et al. Idiopathic atrial fibrillation as a risk factor for mortality. The Paris Prospective Study Ⅰ[J]. Eur Heart J, 1999, 20(12): 896-899. [DOI]
[13]
BURSTEIN B, NATTEL S. Atrial fibrosis: mechanisms and clinical relevance in atrial fibrillation[J]. J Am Coll Cardiol, 2008, 51(8): 802-809. [DOI]
[14]
SCHOTTEN U, VERHEULE S, KIRCHHOF P, et al. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal[J]. Physiol Rev, 2011, 91(1): 265-325. [DOI]
[15]
NATTEL S, BURSTEIN B, DOBREV D. Atrial remodeling and atrial fibrillation[J]. Circ Arrhythmia Electrophysiol, 2008, 1(1): 62-73. [DOI]
[16]
JANUARY C T, WANN L S, ALPERT J S, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society[J]. J Am Coll Cardiol, 2014, 64(21): e1-e76. [DOI]
[17]
IWASAKI Y, NISHIDA K, KATO T, et al. Atrial fibrillation pathophysiology[J]. Circulation, 2011, 124(20): 2264-2274. [DOI]
[18]
OAKES R S, BADGER T J, KHOLMOVSKI E G, et al. Detection and quantification of left atrial structural remodeling with delayed-enhancement magnetic resonance imaging in patients with atrial fibrillation[J]. Circulation, 2009, 119(13): 1758-1767. [DOI]
[19]
KUPPAHALLY S S, AKOUM N, BURGON N S, et al. Left atrial strain and strain rate in patients with paroxysmal and persistent atrial fibrillation[J]. Circ Cardiovasc Imaging, 2010, 3(3): 231-239. [DOI]
[20]
GROBNER T. Gadolinium-a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?[J]. Nephrol Dial Transplant, 2006, 21(4): 1104-1108. [DOI]
[21]
李政, 潘翠珍, 舒先红. 应用二维斑点追踪技术评价正常人左室整体及节段收缩功能[J]. 中国临床医学, 2017, 24(1): 47-50.
LI Z, PAN C Z, SHU X H. Application of two dimensional speckle tracking echocardiography in evaluation of lef tventricular global and segmental systolic function[J]. Chinese Journal of Clinical Medicine, 2017, 24(1): 47-50. [URI]
[22]
CAMELI M, LISI M, RIGHINI F M, et al. Usefulness of atrial deformation analysis to predict left atrial fibrosis and endocardial thickness in patients undergoing mitral valve operations for severe mitral regurgitation secondary to mitral valve prolapse[J]. Am J Cardiol, 2013, 111(4): 595-601. [DOI]
[23]
DONAL E, LIP G Y H, GALDERISI M, et al. EACVI/EHRA Expert Consensus Document on the role of multi-modality imaging for the evaluation of patients with atrial fibrillation[J]. Eur Heart J Cardiovasc Imaging, 2016, 17(4): 355-383. [DOI]
[24]
FATEMA K, BARNES M E, BAILEY K R, et al. Minimum vs. maximum left atrial volume for prediction of first atrial fibrillation or flutter in an elderly cohort: a prospective study[J]. Eur J Echocardiogr, 2009, 10(2): 282-286. [URI]

文章信息

引用本文
王亚男, 赵盈洁, 程羽菲, 陈海燕, 舒先红. 超声心动图及二维斑点追踪评估心房颤动对左心房形态及功能的影响[J]. 中国临床医学, 2021, 28(3): 402-407.
WANG Ya-nan, ZHAO Ying-jie, CHENG Yu-fei, CHEN Hai-yan, SHU Xian-hong. Using echocardiography and two-dimensional speckle tracking to evaluate the influence of atrial fibrillation on the shape and function of the left atrium[J]. Chinese Journal of Clinical Medicine, 2021, 28(3): 402-407.
通信作者(Corresponding authors).
陈海燕, Tel: 021-64041990, E-mail: chen.haiyan@zs-hospital.sh.cn.
基金项目
国家自然科学基金(82071933),上海市卫生健康委员会青年基金项目(20194Y0272),2020上海市医学创新研究专项项目(20Y11912000)
Foundation item
Supported by National Natural Science Foundation of China(82071933), Youth Foundation of Shanghai Municipal Health Commission(20194Y0272) and 2020 Medical Innovation Research Project of Shanghai(20Y11912000)

工作空间