文章快速检索     高级检索
   中国临床医学  2020, Vol. 27 Issue (5): 861-865      DOI: 10.12025/j.issn.1008-6358.2020.20191694
0
胰高血糖素样肽-1改善非酒精性脂肪肝病作用机制的研究进展
李文存 , 袁莉     
华中科技大学同济医学院附属协和医院内分泌科, 武汉 430022
摘要:非酒精性脂肪肝病(nonalcoholic fatty liver disease,NAFLD)与肥胖、胰岛素抵抗、2型糖尿病和血脂紊乱等密切相关。随着肥胖和糖尿病的发病率逐渐升高,NAFLD已成为全球最常见的慢性肝脏疾病。目前,NAFLD的主要治疗方法为改善生活方式、减轻体质量和应用降脂药物,尚缺乏特效的治疗药物。靶向胰高血糖素样肽-1(glucagon-like peptide-1,GLP-1)已被批准用于糖尿病和肥胖治疗,最近大量临床前和临床研究表明,GLP-1可通过多种机制缓解NAFLD。本文将GLP-1改善NAFLD的相关机制研究进展综述如下。
关键词胰高血糖素样肽-1    非酒精性脂肪肝病    分子机制    
Progress of mechanisms of glucagon-like peptide-1 in ameliorating nonalcoholic fatty liver disease
LI Wen-cun , YUAN Li     
Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei, China
Abstract: Nonalcoholic fatty liver disease (NAFLD) is closely associated with obesity, insulin resistance, type 2 diabetes mellitus, and lipid disorders. With the growing incidence of obesity and diabetes, NAFLD has become the most common chronic liver disease worldwide. At present, the treatment of NAFLD is mainly limited to lifestyle intervention, reduction of weight, and use of lipid-lowering drugs, but there is no specific drug for NAFLD. Glucagon-like peptide-1 (GLP-1) has been approved for diabetes and obesity, and numerous clinical and preclinical studies have shown that GLP-1 could alleviate NAFLD by multiple mechanisms. In this paper, the mechanisms of GLP-1 in improving NAFLD are summarized as follows.
Key words: glucagon-like peptide-1    nonalcoholic fatty liver disease    molecular mechanism    

非酒精性脂肪肝病(nonalcoholic fatty liver disease,NAFLD)包括单纯性肝细胞脂肪变性、非酒精性脂肪肝炎(nonalcoholic steatohepatitis,NASH)、肝硬化、肝癌等一系列疾病。NAFLD与肥胖、胰岛素抵抗、2型糖尿病和血脂紊乱等密切相关,被认为是代谢综合征的肝脏表现[1]。NAFLD是遗传、环境、代谢因素等综合作用的结果,其中遗传因素决定了肝脏疾病的易感性[1]。目前,普遍接受的NAFLD的发病机制是“多重打击”学说,肝细胞内脂质沉积和胰岛素抵抗是NAFLD的第1次打击,炎症、氧化应激等为多重打击[2]。近年来研究[3-4]发现,肠道菌群和miRNAs也参与NAFLD的发生。随着肥胖和2型糖尿病(type 2 diabetes mellitus,T2DM)的发病率逐渐升高,NAFLD已成为全球最常见的慢性肝病,同时也是导致肝移植的重要因素[5]。但是目前NAFLD的治疗方法仍较为有限,因此急需寻找治疗NAFLD更为有效的药物。

1 胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)

GLP-1是由肠道L细胞分泌的肠促胰素,由约30个氨基酸组成,有2种生物活性形式,即GLP-1(7~36)和GLP-1(7~37),约80%的活性来自GLP-1(7~36)。GLP-1可迅速被二肽基肽酶4(dipeptidyl peptidase 4,DPP4)水解,半衰期仅为2 min左右,这个特性使得其在临床应用中受限,因此出现了多种合成的GLP-1激动剂。目前已上市的GLP-1激动剂中,包括短效的艾塞那肽(exenatide)、利西拉肽(lixisenatide),长效的利拉鲁肽(liraglutide)、阿必鲁肽(albiglutide)、度拉鲁肽(dulaglutide),及新出现的索马鲁肽(semaglutide)、艾塞那肽长效生物改良制剂(efpeglenatide)。Efpeglenatide在目前上市的GLP-1激动剂中半衰期最长,处于临床3期试验中[6]。为了进一步延长GLP-1激动剂的半衰期和作用时间,研究人员将GLP-1激动剂直接导入GLP-1基因或包裹入多聚物中[7-8],部分研究已进入临床试验阶段[9]。GLP-1受体(GLP-1 receptor,GLP-1R)是跨膜的G蛋白偶联受体,广泛分布于多种组织中,包括胰腺、肝脏、脑等。GLP-1具有广泛的生物学功能,如促进胰岛β细胞分泌胰岛素、抑制α细胞分泌胰高血糖素、延迟胃排空、抑制食欲、促进β细胞的存活与增殖等[10]

2 NAFLD中的GLP-1系统

研究表明,NAFLD患者肝脏组织中GLP-1表达下降,DDP4表达增加,GLP-1水平下降可能是由于分泌的GLP-1减少或DDP4表达增加所致,GLP-1R的表达也下调;而经艾塞那肽治疗后肝脏组织中GLP-1R的表达上调,肝脏脂肪病变明显减轻[11-12]。这提示GLP-1/GLP-1R系统与NAFLD的病理发生密切相关。

目前NAFLD主要治疗方式是改善生活方式、减轻体质量。由于GLP-1被用于肥胖患者减重治疗,因此,GLP-1可能是NAFLD治疗的潜在有效药物。研究发现,GLP-1改善NAFLD与其减轻体质量有密切关系[13]。为了进一步了解GLP-1改善NASH的作用是否仅为体质量减轻所致,有研究人员使用艾塞那肽类似物AC3174治疗NAFLD[14]。结果表明,AC3174治疗显著降低了患者体质量(8.3%)、肝质量(14.2%)、肝脂质(12.9%)、血浆丙氨酸转氨酶和三酰甘油(triglyceride,TG),而热卡受限组肝质量(9%)和肝脂质(5.1%)仅轻微降低。由此提示GLP-1除了通过减轻体质量改善NAFLD外,还可通过其他机制改善NAFLD。

在GLP-1R敲除小鼠中,GLP-1R激动剂改善脂肪肝的作用丧失[14]。尽管AC3174可改善NAFLD,但其治疗GLP-1R敲除小鼠时,对小鼠体质量、肝脏或血浆指标没有影响,这表明AC3174是通过GLP-1R依赖的方式改善NAFLD[14]。这些研究结果提示,GLP-1可直接作用于肝细胞的GLP-1R改善NAFLD。当肝脏组织特异性过表达DPP4时,GLP-1的表达水平显著下降,加重高脂诱导的胰岛素抵抗和肝细胞脂肪变[15]。DPP4敲除鼠血清GLP-1水平明显升高,肝脏组织中TG沉积明显减少;而且高脂喂养的DPP4敲除鼠与相应对照组相比,肝脏组织TG沉积也明显减少[16]。GLP-1R激动剂可以降低血转氨酶,改善NAFLD患者的肝脏组织学变化[17]。因此,GLP-1除了通过减轻体质量间接改善NAFLD,也可直接作用于肝脏而改善NAFLD,靶向GLP-1可能是未来NAFLD治疗的一个新策略。

3 GLP-1改善NAFLD的相关机制 3.1 GLP-1调节肝脏脂质代谢

利拉鲁肽可激活肝细胞内经典的Wnt信号通路,改善胰岛素抵抗和糖异生,改善NAFLD[18]。Ding等[19]的研究表明,GLP-1R激动剂exendin4可增加脂肪酸氧化基因酰辅酶A氧化酶1(acyl-CoA oxidase 1,AOX1)、过氧化物酶体增殖剂激活受体(PPARα)的表达,促进脂肪酸β氧化;抑制脂质合成相关的基因胆固醇调节元件结合蛋白1C(SREBP1C)、硬脂酰辅酶A去饱和酶(SCD1)的表达,从而明显减轻ob/ob小鼠的肝脏脂肪变性和脂质沉积。SIRT1是NAD+依赖的去乙酰化酶,通过使组蛋白和非组蛋白去乙酰化而调节肝脏的脂质代谢。GLP-1受体激动剂可升高NAFLD小鼠SIRT1水平,进而使AMPK磷酸化增加,抑制脂质合成的重要转录因子SREBP1C及其靶基因patatin样磷脂酶域3(PNPLA3)水平下降,减轻NAFLD肝脏组织脂肪变性和肝细胞内脂质沉积。在SIRT+/-小鼠中,艾塞那肽的上述作用丧失,因此SIRT1在GLP-1减轻NAFLD中具有重要作用[20]。因此,GLP-1可通过改善胰岛素抵抗、抑制脂质的合成、促进脂肪酸氧化而改善NAFLD。

3.2 GLP-1减轻炎症

炎症是NAFLD病理发生的一个重要因素。在高脂喂养小鼠NAFLD模型中,利拉鲁肽抑制含NLR家族Pyrin域蛋白3(NLRP3)炎症分子(包括NLRP3、ASC和caspase-1)的激活和肝脏内促炎性细胞因子如肿瘤坏死因子α(TNF α)、核因子κB(NF-κB)的表达,降低炎症信号通路中C-Jun氨基末端激酶(JNK)的磷酸化,减轻肝脏内脂滴积聚[21-23]。Wang等[24]研究发现,exendin4可降低肝脏组织中炎症因子MCP-1的表达,减少巨噬细胞流入肝脏、肝脏内炎症巨噬细胞浸润以及炎性细胞因子的释放,从而改善脂肪肝。

3.3 GLP-1减轻内质网(endoplasmic reticulum,ER)应激

ER参与脂肪酸、TG和胆固醇的代谢,还可激活未折叠蛋白反应(unfolded protein reaction,UPR)及ER应激激活的p-JNK、CHOP等通路,促进炎症及肝细胞凋亡,损伤肝细胞并影响肝脏的生理功能。NAFLD患者肝脏中ER功能是紊乱的,ER功能紊乱促进SREBP1C的转录和成熟,从而促进肝脏内脂质的合成[25]。高脂诱导的NAFLD小鼠及棕榈酸酯(PA)干预的HepG2细胞模型中,ER应激及其诱导的凋亡通路被激活,从而促进肝细胞脂质积聚和凋亡;利拉鲁肽激活ERp46(内质网上的分子伴侣)通路,抑制ER应激及其诱导的凋亡通路的激活,减轻肝细胞内脂滴的积聚[26-27]。Exendin-4还可通过SIRT1依赖的方式减轻PA诱导的肝细胞ER应激反应[28]。可见,GLP-1可削弱NAFLD中ER应激激活的脂质合成和肝细胞凋亡,改善NAFLD。

3.4 GLP-1减轻氧化应激

肝细胞内大量脂肪积聚诱导线粒体β氧化,当超出线粒体的代谢功能,将产生大量活性氧类(ROS),进而损伤线粒体,导致肝细胞内脂肪酸氧化过程障碍,加重肝细胞内脂质的积聚,形成恶性循环[29]。在NAFLD的小鼠肝细胞中可见大量形态异常的线粒体,过氧化物丙二醛(methylene dioxyamphetamine,MDA)产生增多;而经过艾塞那肽治疗后,肝细胞内结构正常的线粒体数量增多、氧化应激减轻、胰岛素抵抗改善、肝细胞内脂质积聚减少[30-31]

3.5 GLP-1增强自噬

自噬参与调节肝脏内脂肪代谢和胰岛素敏感性,当敲除ATG5或使用3甲基腺嘌呤抑制自噬时,肝细胞内TG含量明显增加;肝细胞内长期脂质大量积聚会削弱自噬,因此自噬的调节可能是治疗NAFLD的一个靶点。近来研究[32]表明,GLP-1可调节自噬,改善NAFLD。如GLP-1受体激动剂可激活AMPK/mTOR通路,增强自噬,减轻NAFLD肝细胞中的脂肪变性和脂质沉积。利拉鲁肽增强自噬和自噬流,减轻肝细胞脂肪变性;当使用自噬抑制剂3甲基腺嘌呤时,利拉鲁肽的上述作用丧失[33]

3.6 GLP-1与肠道菌群的作用

NAFLD患者的肠道菌群发生改变,拟杆菌门及拟杆菌门与厚壁菌门的比例下降,厚壁菌门增加[34]。将正常小鼠粪便移植至无菌鼠肠道内,无菌鼠体质量增加,肝脏脂肪变性;无菌鼠可抵抗高脂诱导的体质量增加和NAFLD。由此可见,肠道菌群失调与NAFLD的发生密切相关。利拉鲁肽调节NAFLD小鼠肠道菌群的多样性和肠道上皮炎症,经利拉鲁肽治疗后,变形杆菌减少了8.7%,肠道上皮炎症细胞减少,上皮细胞增多,NAFLD明显减轻[35]。肠道菌群与GLP-1在改善NAFLD中具有重要作用,但仍需进一步研究GLP-1对人体肠道菌群的调节及其改善NAFLD的机制,为GLP-1的临床应用提供有力的依据。

3.7 GLP-1和miRNAs的作用

MiRNA是具有广泛功能的非编码小分子RNA。成熟miRNAs与RNA介导的沉默复合体结合,特异性地作用于靶基因mRNAs的3′非翻译区,从而使mRNA降解或者抑制其翻译,从而负性调节基因的表达。miRNAs对细胞的分化、增殖、代谢等具有重要的作用。miRNAs的异常表达与NAFLD的发生密切相关,如miR34、miR24等[4, 36]。近年来研究[37]发现,GLP-1可调节细胞内miRNAs的表达,改善NAFLD。高脂小鼠模型中,艾塞那肽降低高脂诱导的miR29c、miR124a、miR146a的表达,减轻肝脏脂肪变性[38]。最近的一项研究[39]表明,高脂小鼠模型中,miR200b和miR200c表达下降,脂质合成重要转录因子SREBP1C及其下游酶基因脂肪酸合成酶基因(fatty acid synthase,FAS)表达增加;当过表达miR200b和miR200c,肝脏脂肪变性减轻,SREBP1C、FAS表达下降;DPP4抑制剂西格列汀增加miR200b和miR200c表达,抑制SREBP1C、FAS表达,因此西格列汀可能是通过调节miR200的表达改善NAFLD。在胆固醇诱导的HepG2细胞系中,miR758表达水平增高,ATP结合盒转运体A1(ABCA1)表达降低;GLP-1降低miR758表达,升高ABCA1表达,促进细胞内胆固醇流出,减轻肝细胞脂毒性和脂质的积聚[37]。在高脂喂养小鼠肝脏组织中,miR124a和炎症因子IL-1β、TNF-α、NF-κB表达增加,TG脂肪酶(ATGL)表达下降;利拉鲁肽明显减轻肝脏脂肪变,下调miR124a和炎症因子IL-1β、TNF-α、NF-κB表达,升高ATGL的表达;当过表达miR124a时,利拉鲁肽的上述作用明显削弱,因此利拉鲁肽可能通过抑制miR124a的表达改善NAFLD[40]。因此,miRNAs可能是GLP-1改善NAFLD的一个新的作用靶点。

3.8 其他

肝细胞内癌胚抗原细胞黏附分子1(carcinoembryonic antigen-related cell adhesion molecule 1,CEACAM1)可促进胰岛素受体介导的胰岛素内吞作用,进而清除胰岛素,改善胰岛素敏感性;还可与FAS结合抑制其活性,抑制脂质合成。高脂喂养小鼠的肝脏组织中CEACAM1水平下降,肝细胞脂肪变,肝内TG增加;艾塞那肽通过PPARγ可增加CEACAM1启动子的活性、促进其转录、增加胰岛素的清除、抑制脂质合成、减轻脂肪肝。在CEACAM1-/-鼠中,艾塞那肽的上述作用明显削弱。由此可推测,艾塞那肽可通过CEACAM1促进胰岛素的清除,改善NAFLD[27]

4 GLP-1改善NAFLD的安全性和有效性

在T2DM合并NAFLD的患者中,使用不同剂量(0.9 mg/kg、1.2 mg/kg、1.8 mg/kg)利拉鲁肽均有改善肝脏脂肪沉积和脂肪变的效应;使用1.8 mg/kg可改善NASH,甚至可减轻肝纤维化的恶化。与格列齐特、格列美脲相比,利拉鲁肽可明显减轻肝脏脂肪变[41]。艾塞那肽可降低糖尿病合并NAFLD患者血转氨酶[42]。利拉鲁肽1.8 mg/d治疗48周后,经肝脏活检证实39%接受利拉鲁肽治疗的患者NASH改善,仅有9%的患者进展至肝纤维化;而安慰剂治疗组9%的NASH改善,36%进展至肝纤维化。利拉鲁肽引起的不良反应可耐受,主要表现为胃肠道反应,如恶心、腹泻、食欲下降等[43]。因此,靶向GLP-1治疗NAFLD是安全有效的。但是,靶向GLP-1治疗也存在一定的不良反应,可增加胆囊性疾病,如胆囊炎、胆结石和胆管炎的发生率。GLP-1是否增加胰腺炎和胰腺癌不良反应的研究结果尚不一致[44],因此仍需进一步研究GLP-1与胰腺和胆囊疾病的关系及其作用机制。

综上所述,目前对NAFLD的治疗仍然有限,主要包括生活方式调整、减轻体质量和应用降脂药物。因此,急需寻找预防或减少NAFLD发生发展的治疗药物。进一步理解GLP-1改善NAFLD的分子机制并深入研究GLP-1在临床改善NAFLD中的安全性及有效性,可为GLP-1在NAFLD治疗中的应用提供理论基础。

参考文献
[1]
DAWN M T, CHRISTOPHER D W, STEPHEN A H. Features, diagnosis, and treatment of nonalcoholic fatty liver disease[J]. Clin Gastroenterol Hepatol, 2012, 10(8): 837-58. [DOI]
[2]
NEUSCHWANDER-TETRI B A. Non-alcoholic fatty liver disease[J]. BMC Med, 2017, 15(1): 45. [DOI]
[3]
SALTZMAN E T, PALACIOS T, THOMSEN M, et al. Intestinal microbiome shifts, dysbiosis, inflammation, and non-alcoholic fatty liver disease[J]. Front Microbiol, 2018, 9: 61. [DOI]
[4]
DING J, LI M, WAN X, et al. Effect of miR-34a in regulating steatosis by targeting PPARα expression in nonalcoholic fatty liver disease[J]. Sci Rep, 2015, 5: 13729. [DOI]
[5]
BYRNE C D, TARGHER G. NAFLD:a multisystem disease[J]. J Hepatology, 2015, 62(1 Suppl): S47-S64. [PubMed]
[6]
SHARMA D, VERMA S, VAIDYA S, et al. Recent updates on GLP-1 agonists:current advancements & challenges[J]. Biomed Pharmacother, 2018, 108: 952-962. [DOI]
[7]
MD N, SEUNG A L, VISHNU R, et al. Oral delivery of a therapeutic gene encoding glucagon-like peptide 1 to treat high fat diet-induced diabetes[J]. J Control Release, 2017, 268: 305-313. [DOI]
[8]
ICART L P, DE SOUZA JR F G, LIMA L M T R. Sustained release and pharmacologic evaluation of human glucagon-like peptide-1 and liraglutide from polymeric microparticles[J]. J Microencapsul, 2019, 36(8): 747-758. [DOI]
[9]
SCHNEIDER E L, REID R, PARKES D G, et al. A once-monthly GLP-1 receptor agonist for treatment of diabetic cats[J]. Domest Anim Endocrinol, 2019, 70: 106373. [URI]
[10]
CAMPBELL J E, DRUCKER D J. Pharmacology, physiology, and mechanisms of incretin hormone action[J]. Cell Metab, 2013, 17(6): 819-837. [DOI]
[11]
BERNSMEIER C, MEYER-GERSPACH A C, BLASER L S, et al. Glucose-induced glucagon-like peptide 1 secretion is deficient in patients with non-alcoholic fatty liver disease[J]. PLoS One, 2014, 9(1): e87488. [DOI]
[12]
MIYAZAKI M, KATO M, TANAKA K, et al. Increased hepatic expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease and its association with insulin resistance and glucose metabolism[J]. Mol Med Rep, 2012, 5(3): 729-733. [URI]
[13]
BARB D, PORTILLO-SANCHEZ P, CUSI K. Pharmacological management of nonalcoholic fatty liver disease[J]. Metabolism, 2016, 65(8): 1183-1195. [DOI]
[14]
TREVASKIS J L, GRIFFIN P S, WITTMER C, et al. Glucagon-like peptide-1 receptor agonism improves metabolic, biochemical, and histopathological indices of nonalcoholic steatohepatitis in mice[J]. Am J Physiol Gastrointest Liver Physiol, 2012, 302(8): G762-G772. [DOI]
[15]
BAUMEIER C, SCHLÜTER L, SAUSSENTHALER S, et al. Elevated hepatic DPP4 activity promotes insulin resistance and non-alcoholic fatty liver disease[J]. Mol Metab, 2017, 6(10): 1254-1263. [DOI]
[16]
BEN-SHLOMO S, ZVIBEL I, SHNELL M, et al. Glucagon-like peptide-1 reduces hepatic lipogenesis via activation of AMP-activated protein kinase[J]. J Hepatol, 2011, 54(6): 1214-1223. [DOI]
[17]
KALOGIROU M, SINAKOS E. Treating nonalcoholic steatohepatitis with antidiabetic drugs:will GLP-1 agonists end the struggle[J]. World J Hepatol, 2018, 10(11): 790-794. [DOI]
[18]
QIN Y, CHEN M, YANG Y, et al. Liraglutide improves hepatic insulin resistance via the canonical Wnt signaling pathway[J]. Mol Med Rep, 2018, 17(5): 7372-7380. [PubMed]
[19]
DING X, SAXENA N K, LIN S, et al. Exendin-4, a glucagon-like protein-1(GLP-1) receptor agonist, reverses hepatic steatosis in ob/ob mice[J]. Hepatology, 2006, 43(1): 173-181. [DOI]
[20]
XU F, LI Z, ZHENG X, et al. SIRT1 mediates the effect of GLP-1 receptor agonist exenatide on ameliorating hepatic steatosis[J]. Diabetes, 2014, 63(11): 3637-3646. [DOI]
[21]
ZHANG L, YANG M, REN H, et al. GLP-1 analogue prevents NAFLD in ApoE KO mice with diet and Acrp30 knockdown by inhibiting c-JNK[J]. Liver Int, 2013, 33(5): 794-804. [DOI]
[22]
ZHU W, FENG P P, HE K, et al. Liraglutide protects non-alcoholic fatty liver disease via inhibiting NLRP3 inflammasome activation in a mouse model induced by high-fat diet[J]. Biochem Biophys Res Commun, 2018, 505(2): 523-529. [DOI]
[23]
陈益耀, 陈轶, 何周桃, 等. GLP-1对NAFLD大鼠肝功能及TLR4/NF-κB信号通路的影响[J]. 实用医学杂志, 2018, 34(1): 26-29. [URI]
[24]
WANG Y, PARLEVLIET E T, GEERLING J J, et al. Exendin-4 decreases liver inflammation and atherosclerosis development simultaneously by reducing macrophage infiltration[J]. Br J Pharmacol, 2014, 171(3): 723-734. [URI]
[25]
ZHANG Z, LI B, MENG X, et al. Berberine prevents progression from hepatic steatosis to steatohepatitis and fibrosis by reducing endoplasmic reticulum stress[J]. Sci Rep, 2016, 6: 20848. [DOI]
[26]
AO N, YANG J, WANG X, et al. Glucagon-like peptide-1 preserves non-alcoholic fatty liver disease through inhibition of the endoplasmic reticulum stress-associated pathway[J]. Hepatol Res, 2016, 46(4): 343-353. [DOI]
[27]
GHADIEH H E, MUTURI H T, RUSSO L, et al. Exenatide induces carcinoembryonic antigen-related cell adhesion molecule 1 expression to prevent hepatic steatosis[J]. Hepatol Commun, 2018, 2(1): 35-47. [DOI]
[28]
LEE J, HONG S W, PARK S E, et al. Exendin-4 attenuates endoplasmic reticulum stress through a SIRT1-dependent mechanism[J]. Cell Stress Chaperones, 2014, 19(5): 649-656. [DOI]
[29]
ASHRAF N U, SHEIKH T A. Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease[J]. Free Radic Res, 2015, 49(12): 1405-1418. [DOI]
[30]
WANG Z, HOU L, HUANG L, et al. Exenatide improves liver mitochondrial dysfunction and insulin resistance by reducing oxidative stress in high fat diet-induced obese mice[J]. Biochem Biophys Res Commun, 2017, 486(1): 116-123. [DOI]
[31]
阿英, 王科峰. GLP-1对非酒精性脂肪肝大鼠肝脏脂肪变性的影响[J]. 现代消化及介入诊疗, 2018, 23(4): 450-454. [URI]
[32]
HE Q, SHA S, SUN L, et al. GLP-1 analogue improves hepatic lipid accumulation by inducing autophagy via AMPK/mTOR pathway[J]. Biochem Biophys Res Commun, 2016, 476(4): 196-203. [DOI]
[33]
ZHOU S W, ZHANG M, ZHU M. Liraglutide reduces lipid accumulation in steatotic L-02 cells by enhancing autophagy[J]. Mol Med Rep, 2014, 10(5): 2351-2357. [DOI]
[34]
CANFORA E E, MEEX R C R, VENEMA K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM[J]. Nat Rev Endocrinol, 2019, 15(5): 261-273. [DOI]
[35]
MOREIRA G V, AZEVEDO F F, RIBEIRO L M, et al. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice[J]. J Nutr Biochem, 2018, 62: 143-154. [DOI]
[36]
NG R, WU H, XIAO H, et al. Inhibition of microRNA-24 expression in liver prevents hepatic lipid accumulation and hyperlipidemia[J]. Hepatology, 2014, 60(2): 554-564. [DOI]
[37]
YAO Y, LI Q, GAO P, et al. Glucagon-like peptide-1 contributes to increases ABCA1 expression by downregulating miR-758 to regulate cholesterol homeostasis[J]. Biochem Biophys Res Commun, 2018, 497(2): 652-658. [DOI]
[38]
LEE I S, PARK K C, YANG K J, et al. Exenatide reverses dysregulated microRNAs in high-fat diet-induced obese mice[J]. Obes Res Clin Pract, 2016, 10(3): 315-326. [DOI]
[39]
GUO J, FANG W, SUN L, et al. Reduced miR-200b and miR-200c expression contributes to abnormal hepatic lipid accumulation by stimulating JUN expression and activating the transcription of srebp1[J]. Oncotarget, 2016, 7(24): 36207-36219. [DOI]
[40]
FANG Q H, SHEN Q L, LI J J, et al. Inhibition of microRNA-124a attenuates non-alcoholic fatty liver disease through upregulation of adipose triglyceride lipase and the effect of liraglutide intervention[J]. Hepatol Res, 2019, 49(7): 743-757.
[41]
SEGHIERI M, CHRISTENSEN A S, ANDERSEN A, et al. Future perspectives on GLP-1 receptor agonists and GLP-1/glucagon receptor co-agonists in the treatment of NAFLD[J]. Front Endocrinol (Lausanne), 2018, 9: 649. [DOI]
[42]
SHAO N, KUANG H Y, HAO M, et al. Benefits of exenatide on obesity and non-alcoholic fatty liver disease with elevated liver enzymes in patients with type 2 diabetes[J]. Diabetes Metab Res Rev, 2014, 30(6): 521-529. [DOI]
[43]
ARMSTRONG M J, GAUNT P, AITHAL G P, et al. Liraglutide safety and efficacy in patients with non-alcoholic steatohepatitis (LEAN):a multicentre, double-blind, randomised, placebo-controlled phase 2 study[J]. Lancet, 2016, 387(10019): 679-690. [DOI]
[44]
ANDERSEN A, LUND A, KNOP F K, et al. Glucagon-like peptide 1 in health and disease[J]. Nat Rev Endocrinol, 2018, 14(7): 390-403. [DOI]

文章信息

引用本文
李文存, 袁莉. 胰高血糖素样肽-1改善非酒精性脂肪肝病作用机制的研究进展[J]. 中国临床医学, 2020, 27(5): 861-865.
LI Wen-cun, YUAN Li. Progress of mechanisms of glucagon-like peptide-1 in ameliorating nonalcoholic fatty liver disease[J]. Chinese Journal of Clinical Medicine, 2020, 27(5): 861-865.
通信作者(Corresponding authors).
袁莉, Tel:027-85726114, E-mail:yuanli18cn@163.com.
基金项目
国家自然科学基金(81570700,81974104)
Foundation item
Supported by National Natural Science Foundation of China(81570700, 81974104)

工作空间