全身麻醉的基础在于能够实现可逆性意识消失,意识消失的程度与麻醉药种类及剂量密切相关[1],但其靶向脑区和环路机制至今仍未完全明确。目前,临床中常用的吸入性麻醉药有地氟醚、七氟醚和异氟醚,相比静脉类镇静催眠药,其优势在于单药全凭吸入麻醉即可达到全麻状态[2],无须复合用药,且药物的肺泡浓度易于调控。地氟醚由于自身刺激性、危害气候和价格昂贵等缺点[3-5],使用范围小于其他吸入性麻醉药物[6]。因此,本研究选择七氟醚和异氟醚,探讨其导致意识消失的共同机制通路。
c-Fos蛋白是细胞被外界刺激激活的指标,对不同应激诱导下的神经元活动和神经通路具有示踪作用,可作为神经元激活的标志[7]。研究者[8]采用荧光原位杂交的方法,发现异氟醚通过激活视上核(supraoptic nucleus, SON)中精氨酸加压素(arginine vasopressin, AVP)神经元和催产素(oxytocin, OXT)神经元而参与意识消失的过程。基于此,本研究采用c-Fos和AVP或c-Fos和OXT共同免疫荧光染色的方法,分析暴露于不同浓度吸入性麻醉药小鼠SON中激活的神经元类型。此外,本研究通过全脑c-Fos免疫荧光染色,分析小鼠吸入不同浓度异氟醚或七氟醚后意识消失的关键核团,并探讨小鼠意识消失过程中的大脑动态变化,为今后深入研究全身麻醉意识改变的环路机制提供参考。
1 材料与方法 1.1 实验动物选择雄性C57BL/6小鼠30只,8周龄,体质量22~23 g,购自复旦大学实验动物科学部[许可证号SYXK(沪)2020-0032]。维持室温21~25 ℃、湿度45%~65%、12 h/12 h明/暗循环,自由饮食水,适应性饲养1周。
1.2 吸入性麻醉药诱导意识消失的药物浓度测定采用翻正反射消失(loss of righting reflex, LORR)作为评判全身麻醉药诱导意识消失水平的行为学指标[9],通过监测LORR的持续时间确定吸入性全身麻醉药的高、低浓度临界值[10]。将小鼠置于密封的圆柱形亚克力筒(高度20 cm,直径10 cm),避免光、声音和机械刺激。使用100%氧气作为吸入性麻醉药的载气,气体流速为1 L/min。以异氟醚为例,从0开始增加剂量并观察LORR情况,每10~15 min以0.2%的增量调整1次,当小鼠接近静止状态时,每3 min检测1次翻正反射。浅麻醉状态表现为LORR不超过30 s,深麻醉状态则表现为连续3次LORR超过30 s[11]。经预实验测定,异氟醚浅麻醉和深麻醉的药物浓度临界值分别为(0.8±0.2)%和(1.4±0.2)%,七氟醚浅麻醉和深麻醉的药物浓度临界值分别为(1.3±0.2)%和(2.5±0.2)%。
1.3 实验分组与处理根据预实验结果将小鼠随机分为5组:对照组(C组)、吸入低浓度异氟醚组(IL组)、吸入高浓度异氟醚组(IH组)、吸入低浓度七氟醚组(SL组)和吸入高浓度七氟醚组(SH组)。所有小鼠置于圆筒形亚克力装置,每日给予100%纯氧2 h以适应装置,3 d后给予吸入性麻醉药物。C组吸入100%纯氧2 h、IL组吸入0.8%异氟醚麻醉2 h、IH组吸入1.4%异氟醚麻醉2 h、SL组吸入1.3%七氟醚麻醉2 h、SH组吸入2.5%七氟醚麻醉2 h。既往文献表明,本研究麻醉药浓度(1.4%异氟醚、2.5%七氟醚)和麻醉时长(2 h)不会引起呼吸[12-16]和循环[12-13, 15, 17-19]障碍。各组实验结束后立即进行灌流取脑。
1.4 免疫荧光染色通过对小鼠进行全脑c-Fos免疫荧光染色,观察麻醉对小鼠大脑各核团激活或抑制情况。每组小鼠气体暴露结束后立即经心脏先后灌注PBS和多聚甲醛。剥离完整的小鼠脑组织经固定、沉糖、包埋后,使用冰冻切片机制作40 μm冠状组织切片,室温下破膜和封闭1.5 h后,加入c-Fos一抗(1∶1 000, 226004, Synaptic Systems公司)于4℃孵育过夜。PBS漂洗后,加入生物素化二抗(1∶1 000, BA7000-1.5, Vector Laboratories公司)室温孵育1 h。PBS漂洗后,加入DAPI和相应荧光三抗(1∶1 000, 405235, Biolegend公司)室温避光孵育2 h。PBS漂洗后将脑组织贴于载玻片。采用荧光显微镜扫描拍摄全脑图,统计不同脑区c-Fos阳性细胞数量,并使用Image J软件计数。每只小鼠的每个核团选择相等间距的前、中、后3张冠状面脑片进行计数,并取平均值作为每只小鼠该脑区核团c-Fos细胞数量。每只小鼠选择包含SON的相等间距的前、中、后3张冠状面脑片,室温下破膜和封闭后,加入c-Fos一抗和AVP一抗(1∶2 000, 20069, Immunostar公司)或c-Fos一抗和OXT一抗(1∶1 000, ab212193, Abcam公司)于4℃孵育过夜。PBS漂洗后,加入生物素化二抗室温孵育1 h。PBS漂洗后,加入DAPI、相应荧光三抗和山羊抗兔荧光二抗(1∶1 000, A11036, Invitrogen公司)室温避光孵育2 h,封片后于荧光显微镜下观察并统计共标细胞。3张脑片平均值作为每只小鼠SON的c-Fos阳性细胞与AVP(或OXT)阳性细胞的共标数量。AVP(或OXT)神经元激活百分比定义为AVP(或OXT)和c-Fos的共标细胞占总c-Fos细胞的百分比。
1.5 统计学处理采用GraphPad Prism 8.0进行统计学分析。计量资料以x±s表示,组间比较采用单因素方差分析和Tukey检验。检验水准(α)为0.05。
2 结果 2.1 5组小鼠大脑核团c-Fos阳性细胞数量比较结果(表 1)显示:吸入不同浓度异氟醚或七氟醚后,5组小鼠c-Fos阳性细胞数量差异有统计学意义的大脑核团有SON、中央杏仁核(central amygdala, CeA)、终纹床核(bed nucleus of the stria terminalis, BNST)、前背侧视前核(anterodorsal preoptic nucleus, ADP)、下丘脑外侧区(lateral hypothalamic area, LHA)、扣带回皮质(cingulate cortex, Cg)、次级运动皮质(secondary motor cortex, M2)。c-Fos阳性细胞数量发生变化但差异无统计学意义的核团有前边缘皮质(prelimbic cortex, PrL)、伏隔核(accumbens nucleus, Acb)、屏状核(claustrum, Cl)、外侧隔核中间部(intermedate part of lateral septal nucleus, LSI)、下丘脑室旁核(paraventricular hypothalamic nucleus, PvH)、丘脑室旁核(paraventricular thalamic nucleus, PV)、外侧缰核(lateral habenular nucleus, LHb)、下丘脑后核(posterior hypothalamic nucleus, PH)。
个 | |||||||||||||||||||||||||||||
指标 | C组(n=6) | IL组(n=6) | IH组(n=6) | SL组(n=6) | SH组(n=6) | ||||||||||||||||||||||||
SON | 0 | 109.7±30.5* | 189.6±47.1*△▽ | 109.1±38.2* | 182.0±34.8*△▽ | ||||||||||||||||||||||||
CeA | 24.5±12.2 | 238.8±54.9* | 282.3±55.5* | 239.0±57.0* | 245.7±33.2* | ||||||||||||||||||||||||
BNST | 133.5±67.6 | 333.8±112.5* | 392.8±94.9* | 375.3±67.1* | 404.2±98.8* | ||||||||||||||||||||||||
ADP | 164.8±84.2 | 79.3±44.5* | 47.2±21.7* | 48.0±23.6* | 46.9±24.4* | ||||||||||||||||||||||||
LHA | 145.0±76.5 | 65.0±23.3* | 44.7±22.5* | 66.2±17.2* | 55.3±18.1* | ||||||||||||||||||||||||
Cg | 697.2±435.2 | 392.8±155.4 | 208.2±126.7* | 328.0±98.1 | 302.8±65.5* | ||||||||||||||||||||||||
M2 | 499.3±303.0 | 248.7±109.1 | 127.7±89.3* | 311.0±87.9 | 266.8±111.9 | ||||||||||||||||||||||||
PrL | 303.0±263.4 | 311.8±159.2 | 266.0±156.7 | 498.5±269.6 | 286.0±130.0 | ||||||||||||||||||||||||
Acb | 335.8±246.2 | 211.0±148.2 | 103.7±48.7 | 255.7±111.1 | 134.7±66.5 | ||||||||||||||||||||||||
Cl | 141.7±85.0 | 112.7±54.8 | 71.5±46.3 | 123.3±46.0 | 85.5±19.0 | ||||||||||||||||||||||||
LSI | 250.3±98.5 | 208.2±126.1 | 159.3±101.9 | 176.2±53.2 | 116.3±36.0 | ||||||||||||||||||||||||
PvH | 117.2±68.3 | 187.0±100.1 | 113.2±50.3 | 131.5±48.7 | 107.8±63.7 | ||||||||||||||||||||||||
PV | 116.9±90.0 | 152.9±86.0 | 96.7±63.1 | 142.1±63.4 | 90.7±58.0 | ||||||||||||||||||||||||
LHb | 52.4±20.2 | 68.9±34.7 | 32.7±13.3 | 53.3±33.9 | 28.0±20.6 | ||||||||||||||||||||||||
PH | 261.5±158.6 | 343.6±186.1 | 182.3±41.1 | 263.9±83.6 | 245.0±92.7 | ||||||||||||||||||||||||
SON:视上核;CeA:中央杏仁核;BNST:终纹床核;ADP:前背侧视前核;LHA:下丘脑外侧区;Cg:扣带回皮质;M2:次级运动皮质;PrL:前边缘皮质;Acb:伏隔核;Cl:屏状核;LSI:外侧隔核中间部;PvH:下丘脑室旁核;PV:丘脑室旁核;LHb:外侧缰核;PH:下丘脑后核。与C组相比,*P<0.05;与IL组相比,△P<0.05;与SL组相比,▽P<0.05。 |
与C组相比,IL组、IH组、SL组和SH组SON、CeA和BNST中c-Fos阳性细胞数量均显著增加(P<0.05),ADP和LHA中c-Fos阳性细胞数量显著减少(P<0.05);IH组和SH组Cg中c-Fos阳性细胞数量均显著减少(P<0.05);IH组M2中c-Fos阳性细胞数量显著减少(P<0.05)。与IL组相比,IH组和SH组SON中c-Fos阳性细胞数量显著增加(P<0.05)。与SL组相比,IH组和SH组SON中c-Fos阳性细胞数量显著增加(P<0.05)。其余组间两两比较差异无统计学意义(P>0.05)。5组小鼠大脑核团c-Fos免疫荧光染色结果见图 1。
![]() |
图 1 5组小鼠大脑核团c-Fos免疫荧光染色图 蓝色为DAPI阳性,绿色为c-Fos阳性。Original magnification:×200。 |
c-Fos和AVP(或OXT)共同免疫荧光染色(图 2)显示:对照组c-Fos阳性细胞和AVP(或OXT)阳性细胞无共标,IL组、IH组、SL组和SH组的c-Fos阳性细胞和AVP阳性细胞大量共标,IL组、IH组、SL组和SH组的c-Fos阳性细胞和OXT阳性细胞少量共标。
![]() |
图 2 5组小鼠SON核团免疫荧光染色图 蓝色为DAPI阳性,绿色为c-Fos阳性,红色为AVP或OXT阳性,黄色为共标细胞。Original magnification:×200。 |
比较5组小鼠SON神经元激活百分比,结果(图 3A)显示:与C组相比,IL组、IH组、SL组和SH组SON中AVP神经元激活百分比显著升高(P<0.000 1);其余组间两两比较差异无统计学意义。结果(图 3B)显示:5组小鼠SON中OXT神经元激活百分比差异无统计学意义(P=0.08)。
![]() |
图 3 5组小鼠SON神经元激活百分比的比较 A:5组小鼠SON中AVP神经元激活百分比;B:5组小鼠SON中OXT神经元激活百分比。与C组相比,****P<0.000 1。x±s,n=3。 |
c-Fos作为神经元活动的标志,可以特异性反映应激诱导的神经元活动区域。吸入不同浓度异氟醚或七氟醚,小鼠的翻正反射表现不同:低浓度麻醉时小鼠翻正反射不消失,高浓度麻醉时小鼠翻正反射消失,这与临床麻醉诱导的分期表现一致。低浓度麻醉时小鼠通常表现出的躁动兴奋,可能与应激相关的核团c-Fos表达增加有关。
本研究采用小鼠全脑c-Fos免疫荧光染色的方法,分析暴露于不同浓度异氟醚或七氟醚小鼠的c-Fos阳性细胞数量发生变化的大脑核团,结果显示,与对照组相比,SON、CeA和BNST中c-Fos阳性细胞数量显著增加,ADP和LHA中c-Fos阳性细胞数量显著减少;与低浓度组相比,吸入高浓度异氟醚或七氟醚可显著减少Cg中c-Fos阳性细胞数量,吸入高浓度异氟醚可显著减少M2中c-Fos阳性细胞数量。无论哪种吸入麻醉药,高浓度药物暴露下的SON中c-Fos阳性细胞数量显著高于低浓度组,由此推断SON可能是一个吸入性麻醉药浓度依赖性调节意识消失的核团。既往研究[8]显示,SON中AVP神经元和OXT神经元的大量激活共同参与自然睡眠和1.0%~1.2%异氟醚诱导意识消失的机制。因此,本研究选择AVP和OXT神经元抗体分别与c-Fos进行共同免疫荧光染色,探讨麻醉激活SON中的具体神经元类型。共定位结果显示,吸入不同浓度异氟醚或七氟醚后,小鼠SON中AVP神经元均显著激活,而OXT神经元未激活。
3.1 促意识消失核团或通路Hua等[20]研究表明,1.5%异氟醚激活了SON、CeA和BNST。本研究结果显示,不同浓度异氟醚或七氟醚麻醉均显著增加SON、CeA和BNST中c-Fos阳性细胞数量,与上述结论一致。其他类型的全身麻醉药物如丙泊酚、氯胺酮和右美托咪定也可以增加SON中c-Fos阳性细胞数量,同时选择性激活c-Fos神经元并诱导睡眠[8]。AVP参与昼夜节律睡眠觉醒调控,而SON的AVP神经元可接受直接来自昼夜节律主要调节核团即视交叉上核的神经传入投射[21]。常见镇静催眠药沙利度胺可激活SON的AVP神经元[22]。本研究结果显示,SON的AVP神经元是不同浓度异氟醚或七氟醚麻醉激活的主要神经元类型,与上述结论一致,提示SON的AVP神经元可能是参与吸入性全麻意识消失机制的主要神经元亚型。
3.2 促觉醒核团或通路CeA、BNST和LHA同属于边缘系统,边缘系统在麻醉引起的意识消失中起着重要作用[23]。CeA可被异氟醚和氯胺酮激活。氯胺酮激活CeA中的γ-氨基丁酸(γ-aminobutyric acid, GABA)能神经元亚型主要发挥镇痛作用[20],直接激活BNST的GABA能神经元促进小鼠从非快速眼动睡眠转变为清醒状态[24],激活PV-BNST神经环路加速七氟醚麻醉小鼠苏醒[25]。本研究结果显示,不同浓度异氟醚或七氟醚麻醉显著激活CeA和BNST,可能是由于异氟醚和七氟醚通过激活CeA和BNST的非GABA能神经元而诱导意识消失,或是通过不同神经输入输出通路或不同亚核起作用。
ADP在昼夜节律中起唤醒作用[26]。LHA是全身麻醉中的唤醒核,抑制LHA的GABA能神经元促进丙泊酚麻醉意识消失[27],激活LHA的谷氨酸能神经元或促食欲素能神经元加速异氟醚麻醉苏醒[28-29],激活腹侧被盖区(ventral tegmental area, VTA)-LHA、LHA-LHb和LHA-PV神经环路中的LHA可减浅七氟醚或异氟醚麻醉深度[30-32]。其中,LHA-PV神经环路除了参与调控全麻过程中的意识状态,同时也是控制生理性觉醒的有效环路[32]。随着七氟醚和丙泊酚麻醉深度增加,Cg的活动及其与其他脑区的功能连接下降[33]。本研究结果显示,不同浓度异氟醚和七氟醚麻醉明显减少ADP和LHA中c-Fos阳性细胞数量,高浓度异氟醚和七氟醚麻醉明显减少Cg中c-Fos阳性细胞数量,与上述结论一致。由此推测,全麻意识消失可能与生理睡眠共享或存在交叉神经环路机制有关。
Acb、PV、PrL、PvH、Cl及其组成的神经环路促进全麻唤醒[32, 34-41]。本研究显示,以上核团在所有麻醉暴露组中被抑制,但差异无统计学意义。其原因可能是本研究未进行这些核团的神经元亚型分类。例如,LHb的不同神经元亚型在全身麻醉诱导的意识消失上起着不同的作用,LHb中的谷氨酸能神经元可诱导异氟醚麻醉所致的意识消失[42],而GABA能神经元和促食欲素能神经元可以促进全麻后苏醒[43]。
3.3 本研究局限性(1)c-Fos表达无特异性,任何光照、声音等外界机械刺激都可能激活c-Fos,使其表达增加,因此本研究不能完全避免混杂因素;(2)本研究未区分神经元类型特异的c-Fos表达情况,同一核团可能存在作用相反的神经元亚型,可能导致单一核团整体神经元c-Fos表达无变化的假阴性结果;(3)吸入性麻醉药和静脉麻醉药都是临床常用的全身麻醉药物,由于静脉麻醉药在控制血药浓度稳定上存在难度,本研究仅选择吸入性麻醉药,缺少静脉麻醉药的相关内容;(4)全身麻醉的神经机制是各核团相互投射和联系形成的神经环路和网络的整体机制,但本研究仅局限于单个核团的分析;(5)对于SON中调控全麻意识消失的主要神经元类型,缺乏化学或光遗传学的验证性实验。
综上所述,吸入0.8%、1.4%异氟醚或1.3%、2.5%七氟醚2 h可以使小鼠大脑SON、CeA和BNST中c-Fos阳性细胞数量增加,ADP和LHA中c-Fos阳性细胞数量减少。其中,SON的AVP神经元显著激活且与c-Fos阳性细胞大量共标。
利益冲突: 所有作者声明不存在利益冲突。
[1] |
BONHOMME V, STAQUET C, MONTUPIL J, et al. General anesthesia: a probe to explore consciousness[J]. Front Syst Neurosci, 2019, 13: 36.
[DOI]
|
[2] |
JEDLICKA J, GROENE P, LINHART J, et al. Inhalational anesthetics[J]. Anaesthesist, 2021, 70(4): 343-355.
[DOI]
|
[3] |
HENDRICKX J F A, NIELSEN O J, DE HERT S, et al. The science behind banning desflurane: a narrative review[J]. Eur J Anaesthesiol, 2022, 39(10): 818-824.
[DOI]
|
[4] |
MCGAIN F, MURET J, LAWSON C, et al. Environmental sustainability in anaesthesia and critical care[J]. Br J Anaesth, 2020, 125(5): 680-692.
[DOI]
|
[5] |
MOODY A E, BEUTLER B D, MOODY C E. Predicting cost of inhalational anesthesia at low fresh gas flows: impact of a new generation carbon dioxide absorbent[J]. Med Gas Res, 2020, 10(2): 64-66.
[DOI]
|
[6] |
DEVLIN-HEGEDUS J A, MCGAIN F, HARRIS R D, et al. Action guidance for addressing pollution from inhalational anaesthetics[J]. Anaesthesia, 2022, 77(9): 1023-1029.
[DOI]
|
[7] |
AZEVEDO H, FERREIRA M, MASCARELLO A, et al. Brain-wide mapping of c-fos expression in the single prolonged stress model and the effects of pretreatment with ACH-000029 or prazosin[J]. Neurobiol Stress, 2020, 13: 100226.
[DOI]
|
[8] |
JIANG-XIE L F, YIN L P, ZHAO S L, et al. A common neuroendocrine substrate for diverse general anesthetics and sleep[J]. Neuron, 2019, 102(5): 1053-1065.
[DOI]
|
[9] |
JORDAN D, ILG R, RIEDL V, et al. Simultaneous electroencephalographic and functional magnetic resonance imaging indicate impaired cortical top-down processing in association with anesthetic-induced unconsciousness[J]. Anesthesiology, 2013, 119(5): 1031-1042.
[DOI]
|
[10] |
ZHANG Y, GUI H, DUAN Z K, et al. Dopamine D1 receptor in the nucleus accumbens modulates the emergence from propofol anesthesia in rat[J]. Neurochem Res, 2021, 46(6): 1435-1446.
[DOI]
|
[11] |
HAN L C, ZHANG H, WANG W, et al. The effect of sevoflurane inhalation on gabaergic neurons activation: observation on the GAD67-GFP knock-in mouse[J]. Anat Rec (Hoboken), 2010, 293(12): 2114-2122.
[DOI]
|
[12] |
DE SEGURA I A, DE LA VÍBORA J B, CRIADO A. Determination of the minimum alveolar concentration for halothane, isoflurane and sevoflurane in the gerbil[J]. Lab Anim, 2009, 43(3): 239-242.
[DOI]
|
[13] |
DONG Y L, ZHANG G H, ZHANG B, et al. The common inhalational anesthetic sevoflurane induces apoptosis and increases beta-amyloid protein levels[J]. Arch Neurol, 2009, 66(5): 620-631.
|
[14] |
LIU J H, ZHANG X Q, ZHANG W, et al. Effects of sevoflurane on young male adult C57BL/6 mice spatial cognition[J]. PLoS One, 2015, 10(8): e0134217.
[DOI]
|
[15] |
LOW L A, BAUER L C, KLAUNBERG B A. Comparing the effects of isoflurane and alpha chloralose upon mouse physiology[J]. PLoS One, 2016, 11(5): e0154936.
[DOI]
|
[16] |
ZHAO X P, ZHONG F, LUO R Y, et al. Early-life sevoflurane exposure impairs fear memory by suppressing extracellular signal-regulated kinase signaling in the bed nucleus of stria terminalis GABAergic neurons[J]. Neuropharmacology, 2021, 191: 108584.
[DOI]
|
[17] |
EBERT T J, HARKIN C P, MUZI M. Cardiovascular responses to sevoflurane: a review[J]. Anesth Analg, 1995, 81(6 suppl): S11-S22.
|
[18] |
POON Y Y, TSAI C Y, HUANG Y H, et al. Disproportional cardiovascular depressive effects of isoflurane: Serendipitous findings from a comprehensive re-visit in mice[J]. Lab Anim (NY), 2021, 50(1): 26-31.
[DOI]
|
[19] |
ROLF N, VAN AKEN H. Cardiovascular effects of sevoflurane[J]. Anaesthesist, 1998, 47(Suppl 1): S11-S18.
|
[20] |
HUA T, CHEN B, LU D Y, et al. General anesthetics activate a potent central pain-suppression circuit in the amygdala[J]. Nat Neurosci, 2020, 23(7): 854-868.
[DOI]
|
[21] |
WEI H H, YUAN X S, CHEN Z K, et al. Presynaptic inputs to vasopressin neurons in the hypothalamic supraoptic nucleus and paraventricular nucleus in mice[J]. Exp Neurol, 2021, 343: 113784.
[DOI]
|
[22] |
HIROSE Y, KITAZONO T, SEZAKI M, et al. Hypnotic effect of thalidomide is independent of teratogenic ubiquitin/proteasome pathway[J]. Proc Natl Acad Sci U S A, 2020, 117(37): 23106-23112.
[DOI]
|
[23] |
CRONE J S, LUTKENHOFF E S, BIO B J, et al. Testing proposed neuronal models of effective connectivity within the cortico-basal Ganglia-thalamo-cortical loop during loss of consciousness[J]. Cereb Cortex, 2017, 27(4): 2727-2738.
|
[24] |
KODANI S, SOYA S, SAKURAI T. Excitation of GABAergic neurons in the bed nucleus of the stria terminalis triggers immediate transition from non-rapid eye movement sleep to wakefulness in mice[J]. J Neurosci, 2017, 37(30): 7164-7176.
[DOI]
|
[25] |
LI J Y, GAO S J, LI R R, et al. A neural circuit from the paraventricular thalamus to the bed nucleus of the stria terminalis for the regulation of states of consciousness during sevoflurane anesthesia in mice[J]. Anesthesiology, 2022, 136(5): 709-731.
[DOI]
|
[26] |
PETERFI Z, CHURCHILL L, HAJDU I, et al. Fos-immunoreactivity in the hypothalamus: dependency on the diurnal rhythm, sleep, gender, and estrogen[J]. Neuroscience, 2004, 124(3): 695-707.
[DOI]
|
[27] |
SHI Y H, XIAO D S, DAI L B, et al. The hypnotic effect of propofol involves inhibition of GABAergic neurons in the lateral hypothalamus[J]. Neuroreport, 2019, 30(14): 927-932.
[DOI]
|
[28] |
ZHAO S Y, LI R, LI H M, et al. Lateral hypothalamic area glutamatergic neurons and their projections to the lateral habenula modulate the anesthetic potency of isoflurane in mice[J]. Neurosci Bull, 2021, 37(7): 934-946.
[DOI]
|
[29] |
XIANG X E, CHEN Y Z, LI K X, et al. Neuroanatomical basis for the orexinergic modulation of anesthesia arousal and pain control[J]. Front Cell Neurosci, 2022, 16: 891631.
[DOI]
|
[30] |
ZHOU F, WANG D, LI H M, et al. Orexinergic innervations at GABAergic neurons of the lateral habenula mediates the anesthetic potency of sevoflurane[J]. CNS Neurosci Ther, 2023, 29(5): 1332-1344.
[DOI]
|
[31] |
YIN L, LI L, DENG J, et al. Optogenetic/chemogenetic activation of GABAergic neurons in the ventral tegmental area facilitates general anesthesia via projections to the lateral hypothalamus in mice[J]. Front Neural Circuits, 2019, 13: 73.
[DOI]
|
[32] |
REN S C, WANG Y L, YUE F G, et al. The paraventricular thalamus is a critical thalamic area for wakefulness[J]. Science, 2018, 362(6413): 429-434.
[DOI]
|
[33] |
QIN P M, WU X H, WU C W, et al. Higher-order sensorimotor circuit of the brain's global network supports human consciousness[J]. Neuroimage, 2021, 231: 117850.
[DOI]
|
[34] |
AO Y W, YANG B, ZHANG C J, et al. Locus coeruleus to paraventricular thalamus projections facilitate emergence from isoflurane anesthesia in mice[J]. Front Pharmacol, 2021, 12: 643172.
[DOI]
|
[35] |
GUI H, LIU C X, HE H F, et al. Dopaminergic projections from the ventral tegmental area to the nucleus accumbens modulate sevoflurane anesthesia in mice[J]. Front Cell Neurosci, 2021, 15: 671473.
[DOI]
|
[36] |
LEUNG L S, MA J. Medial septum modulates consciousness and psychosis-related behaviors through hippocampal gamma activity[J]. Front Neural Circuits, 2022, 16: 895000.
[DOI]
|
[37] |
LUO T Y, LI L Y, LI J, et al. Claustrum modulates behavioral sensitivity and EEG activity of propofol anesthesia[J]. CNS Neurosci Ther, 2023, 29(1): 378-389.
[DOI]
|
[38] |
PAL D, DEAN J G, LIU T C, et al. Differential role of prefrontal and parietal cortices in controlling level of consciousness[J]. Curr Biol, 2018, 28(13): 2145-2152.
[DOI]
|
[39] |
SONG Y P, CHU R T, CAO F Y, et al. Dopaminergic neurons in the ventral tegmental-prelimbic pathway promote the emergence of rats from sevoflurane anesthesia[J]. Neurosci Bull, 2022, 38(4): 417-428.
[DOI]
|
[40] |
WANG Y L, WANG L, XU W, et al. Paraventricular thalamus controls consciousness transitions during propofol anaesthesia in mice[J]. Br J Anaesth, 2023, 130(6): 698-708.
[DOI]
|
[41] |
YIN J Y, QIN J, LIN Z J, et al. Glutamatergic neurons in the paraventricular hypothalamic nucleus regulate isoflurane anesthesia in mice[J]. FASEB J, 2023, 37(3): e22762.
[DOI]
|
[42] |
LIU C X, LIU J X, ZHOU L, et al. Lateral habenula glutamatergic neurons modulate isoflurane anesthesia in mice[J]. Front Mol Neurosci, 2021, 14: 628996.
[DOI]
|
[43] |
MASHOUR G A, KELZ M B. Systems neuroscience: the exciting journey to oblivion[J]. Curr Biol, 2018, 28(5): R223-R224.
[DOI]
|