文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (5): 887-892      DOI: 10.12025/j.issn.1008-6358.2023.20220243
0
B7-H3在食管癌中的研究进展
朱昱霖1,2 , 易忠权3 , 宋建祥1,2     
1. 南通大学第六附属医院(盐城市第三人民医院)心胸外科, 盐城 224000;
2. 南通大学医学院, 南通 226000;
3. 南通大学第六附属医院(盐城市第三人民医院)中心实验室, 盐城 224000
摘要:食管癌是一种高发恶性肿瘤,发病率逐年上升,常规手术治疗及放化疗疗效较差。近年来,免疫疗法的不断发展为食管癌的治疗提供了新思路。B7-H3(CD276)在食管癌等多种类型的肿瘤中过表达,与患者的不良预后密切相关,是一种有前景的免疫治疗靶点。B7-H3对食管癌免疫反应主要发挥负性调节作用,可能是食管癌潜在的生物标志物,有望为肿瘤免疫治疗拓展新方向。本文对B7-H3在食管癌中作用的研究进展作一综述。
关键词食管癌    B7-H3    免疫    分子标志物    
Research progress of B7-H3 in esophageal cancer
ZHU Yu-lin1,2 , YI Zhong-quan3 , SONG Jian-xiang1,2     
1. Department of Cardiothoracic Surgery, the Sixth Affiliated Hospital of Nantong University (Yancheng Third People's Hospital), Yancheng 224000, Jiangsu, China;
2. Nantong Universty Medical School, Nantong 226000, Jiangsu, China;
3. Department of Central Laboratory, the Sixth Affiliated Hospital of Nantong University (Yancheng Third People's Hospital), Yancheng 224000, Jiangsu, China
Abstract: Esophageal cancer is a high-incidence malignant tumor, and its incidence is increasing year by year. Conventional surgical treatment, radiotherapy and chemotherapy have no enough improvement in the poor prognosis. In recent years, the continuous development of immunotherapy has provided new ideas for the treatment of esophageal cancer. B7-H3 (CD276), is overexpressed in various types of tumors such as esophageal cancer, has been confirmed to be closely related to the poor prognosis of patients, and may be a promising immunotherapy target. B7-H3 mainly plays a negative regulatory role in esophageal cancer immune response. B7-H3 may be a potential biomarker in tumorigenesis and the development of esophageal cancer, which is expected to expand new directions for anti-tumor immunotherapy. This article reviews research progress of the roles of B7-H3 in esophageal cancer.
Key words: esophageal cancer    B7-H3    immunity    biomarkers    

食管癌发病率较高,近年来已上升为全球癌症第7位,主要包括鳞状细胞癌和腺癌两种病理类型,预后较差[1]。亚洲是食管癌高发地区,在中国,食管癌的发病率和死亡率均居前5位[2]。医疗水平的发展对食管癌患者预期寿命的改善较为有限,其5年生存率目前仍不足20%[3]。食管癌预后差的主要原因为早期临床症状不明显,患者就诊时分期常已较晚[4]。增加术前新辅助化疗及术后放疗等进行综合抗肿瘤治疗,仍不能改善患者预后[5]。免疫疗法可重新激活免疫系统抗肿瘤效应,并抑制肿瘤免疫逃逸[6]。免疫检查点抑制剂为肿瘤免疫治疗的新变革[7]。识别新的特异生物标志物可以为肿瘤的免疫疗法提供新思路,进而改善肿瘤治疗效果和患者预后。

T细胞在多种免疫反应中发挥关键作用,其活化需要双重信号刺激:第一信号由T细胞受体(TCR)与多肽结合的主要组织相容性复合物(MHC)相互作用产生;第二信号由T细胞与抗原呈递细胞(APC)上配体的共刺激分子的相互作用产生[8]。与共刺激分子的相互作用为激活T细胞所必需,决定T细胞是活化增殖还是转变为无反应状态或凋亡[8]。B7家族是重要的共刺激分子家族之一,可以产生刺激信号或抑制信号来增强或抑制T细胞在免疫反应中的活性[9]。B7-H3(CD276)成员为重要免疫检查点,在包括食管癌在内的多种肿瘤进展中发挥重要的免疫调节作用,可能为食管癌的潜在生物标志物[10-11]。本文就近年来B7-H3在食管癌进展中作用的相关研究作一综述。

1 B7-H3的结构与表达 1.1 B7-H3的分子结构与亚型

B7-H3最初由Chapoval等[12]于2001年在人树突状细胞的基因库中发现,主要以膜蛋白形式和可溶性形式存在。膜蛋白形式的B7-H3在人体内是一种由15号染色体编码的包含316个氨基酸的Ⅰ型跨膜蛋白,分子结构与B7-H1(PD-L1)相似[13]。B7-H3有2种结构:2Ig-B7-H3和4Ig-B7-H3。2Ig-B7-H3可表达于小鼠与人体细胞,而4Ig-B7-H3仅表达于人体细胞[13-14]。B7-H3的2种结构体在T细胞的免疫激活中发挥相反的生物学效应:2Ig-B7-H3分子主要通过与T细胞表面正性刺激受体相结合来激活T细胞及免疫因子;4Ig-B7-H3则通过与T细胞表面负性受体相结合,限制其免疫应答[13]。2008年,Zhang等[15]首先证实,B7-H3的可溶性形式(sB7-H3)可以与膜蛋白形式的B7-H3竞争性结合T细胞上的相关受体。但sB7-H3的具体调控作用目前尚不清楚。sB7-H3由金属蛋白酶剪切修饰膜蛋白形成,可用于预测胰腺癌、膀胱癌等多种疾病的恶性进展[16-17]。另有研究[18]表明,具有正性调节免疫细胞功能的肿瘤坏死因子α(TNF-α)可以显著增加sB7-H3的分泌。

1.2 B7-H3的表达

B7-H3转录本在人体各种组织中均广泛表达,而B7-H3蛋白则仅在一些肿瘤中高表达[19]。该现象提示,严格的转录后修饰可能对其表达有调控作用。但是,目前人体内B7-H3受体与其作用机制仍有争议。有研究[20]表明,髓细胞样触发受体(TREML2)-样转录物2(TLT-2)可能是小鼠体内B7-H3的一个潜在受体。TLT-2可以与细胞表面B7-H3结合,使信号传至T细胞,促使白细胞介素2(IL-2)和γ干扰素(IFN-γ)的生成增加,进而增强机体免疫功能;外周血中sB7-H3的表达可能与组织中膜蛋白形式B7-H3的表达有关,可能原因为sB7-H3由膜蛋白剪切修饰产生。

2 B7-H3与免疫反应

T细胞在免疫应答中的激活需要共刺激信号调控。根据调控作用,共刺激信号包括激活T细胞、强化T细胞免疫反应的正性共刺激信号,以及限制T细胞活化增殖、抑制其免疫反应,从而促进免疫逃逸的负性共刺激信号[21]。而B7-H3在免疫系统中发挥正负双重调节作用:一方面,B7-H3通过提供正性共刺激信号来刺激T细胞活化,增强免疫反应[12, 22];另一方面,B7-H3通过提供负性共刺激信号来抑制T细胞活化和效应细胞因子的产生,促使肿瘤免疫逃逸[23]。B7-H3在肿瘤免疫中的双重调节作用可能与多种通路协调作用有关。

Chapoval等[12]用抗CD3抗体模拟TCR信号时,首次发现B7-H3可以为CD4+T细胞和CD8+T细胞呈递活化共刺激信号,强化细胞毒性T细胞的诱导,选择性刺激IFN-γ的产生。T细胞的这种正性刺激作用在小鼠肿瘤模型中也被发现[24]。Han等[25]则发现,B7-H3能通过促进IL-10和IFN-β1的产生来影响免疫微环境,发挥免疫抑制作用,从而促进肿瘤进展;Shao等[26]发现,抑制B7-H3的表达会促进T细胞的免疫功能,提高TNF-α和IFN-γ的表达水平,增强肿瘤抑制。除有关B7-H3对T细胞及免疫微环境发生作用的报道外,另有研究[27-28]指出,B7-H3可富集于巨噬细胞,使之发生M2型巨噬细胞极化,或通过促进细胞外基质重建及肿瘤血管生成来促进肿瘤转移,发挥免疫抑制作用。

B7-H3在肺癌、肝癌以及食管癌等肿瘤中高表达,且其表达水平与肿瘤的恶性进展和不良预后明显相关[29-32]。尽管有研究[33]发现,B7-H3可能通过调节JAK2/STAT3途径来影响多种肿瘤的进展,但该结果尚待进一步证实。总之,作为T细胞反应的共刺激或共抑制的双重作用因子,B7-H3在不同研究中的不同表现可能与调控其作用的通路有关。B7-H3相关受体及发挥作用的分子机制仍待进一步探讨。

3 B7-H3在食管癌中的作用 3.1 B7-H3在食管癌组织中的表达情况

陈俊俊等[34]于2013年进行了B7-H3在食管癌中作用的研究,发现B7-H3在食管肿瘤组织中高表达,并与更深的肿瘤浸润及更差的患者预后密切相关。这提示B7-H3对食管癌的免疫微环境可能主要发挥负性调节作用。目前已证实,B7-H3在食管肿瘤组织中高表达,在癌旁及正常组织中低表达或不表达,且其表达与肿瘤的进展、预后及复发密切相关[35-37]。B7-H3高表达的食管癌患者疾病进展常较为迅速,肿瘤更易浸润侵袭、淋巴转移较早、预后较差,更易复发。沉默食管癌细胞的B7-H3基因后,细胞迁移及侵袭能力会受到较为明显的抑制[38]。目前B7-H3能否增强食管肿瘤细胞的增殖能力存在争议[38-39],但已明确B7-H3高表达促进肿瘤侵袭。此外,另有研究[39]表明,B7-H3表达与食管肿瘤的血管增生能力有关,抑制B7-H3表达能明显减少肿瘤血管新生,并促进肿瘤细胞凋亡。上述研究提示,B7-H3可作为食管癌免疫治疗的潜在分子靶点,其在食管癌中的表达水平对预测患者预后有重要参考价值。

3.2 B7-H3在食管癌中的免疫调节作用

B7-H3虽然对免疫反应发挥双重作用,但在食管癌免疫中主要发挥负性调节作用。首先,B7-H3一般抑制食管癌患者的T细胞活性。CD3+T淋巴细胞与CD8+T淋巴细胞分别代表总T细胞及细胞毒性T细胞,在肿瘤免疫微环境中均发挥重要作用,其数量减少或功能活性降低会严重损害机体的抗肿瘤免疫能力。而B7-H3在食管癌中的表达与CD8+、CD3+T淋巴细胞的浸润程度负相关[40-42],可能通过抑制T细胞活性来参与肿瘤的免疫逃逸。其次,B7-H3可能通过联合B7家族的其他成员(B7-H1、B7-H4)来共同控制食管癌的肿瘤免疫。B7-H3和B7-H4高表达与肿瘤浸润深度、TNM分期、淋巴结转移及预后相关[43]。B7-H3与B7-H1在食管癌中共表达的作用与B7-H3联合B7-H4共表达相似,能抑制T淋巴细胞在肿瘤组织中的浸润[44]。体外实验[43-44]显示,B7-H3与B7家族其他成员共表达可通过负性调控肿瘤细胞自身的增殖、迁移及侵袭能力来促进食管癌的发生与发展。

B7-H3还可以通过调控相关炎症因子的表达来影响食管癌的进展。李鹏飞[39]研究发现,沉默B7-H3可使食管癌细胞IL-6的分泌受到抑制。IL-6是JAK2/STAT3信号通路的激活因子[45],而JAK2/STAT3信号通路可以通过调控基质金属蛋白酶(MMPs)与血管内皮生长因子(VEGF)来影响细胞外基质与血管生成[46]

MMPs能降解细胞外基质,为肿瘤的侵袭转移创造条件。有研究[39, 47]证实,MMP-7、MMP-9过表达会促进食管癌的侵袭转移,而食管癌细胞中的B7-H3基因受到抑制时,MMP-7、MMP-9的表达受到明显抑制。VEGF能通过促进肿瘤内新生血管的生长来影响肿瘤增殖、侵袭与转移;VEGF在高表达B7-H3的食管癌中过表达[39]

因此,B7-H3在食管癌中可能通过刺激IL-6分泌激活JAK2/STAT3信号通路,促进MMP-7、MMP-9过表达降解细胞外基质,同时促进VEGF过表达使肿瘤内血管增生,进而促进食管癌进展。同时,B7-H3过表达活化STAT3信号通路后会诱导PKM2磷酸化,从而促进肿瘤糖代谢[37]。而肿瘤中过度活跃的糖代谢会增强肿瘤侵袭与转移活力,从而促进肿瘤进展。此外,B7-H3对食管癌中IFN-γ与TNF-α也有抑制作用[48]。B7-H3可能通过抑制具有强化免疫反应能力的IFN-γ与TNF-α表达来抑制食管癌组织中T淋巴细胞的激活,加强肿瘤细胞免疫逃逸。

B7-H3与肿瘤相关巨噬细胞(TAM)关联控制食管癌的肿瘤免疫。TAM是肿瘤微环境的另一个关键组成部分,与肿瘤发生、进展及药物抗性关系密切。TAM主要包含抗肿瘤M1型(经典活化状态)和亲肿瘤M2型(选择活化状态)。这两种表型在肿瘤进展中发挥相反作用。M1类TAM为宿主防御癌症发生发展的主要因子之一;M2类TAM与肿瘤不良预后密切相关,可降低化疗和放疗疗效,通过抑制CD8+T细胞功能促进肿瘤进展[49]。体外实验[50]发现,抑制B7-H3表达可降低M2类TAM极化比例。B7-H3可能参与诱导TAM的M2类极化。上述研究提示,B7-H3在食管癌中可能通过参与调节肿瘤微环境TAM表型极化,来调控肿瘤免疫。

为检测B7-H3作为免疫治疗靶点的效能,有研究[51-52]构建了B7-H3特异性CAR-T细胞,证实该CAR-T细胞对食管癌的原代肿瘤细胞活性和肿瘤生长有显著抑制能力,并显著延长小鼠生存期。针对B7-H3的免疫靶向治疗或可成为食管恶性肿瘤的潜在治疗手段。

有研究[11, 16-17]表明,sB7-H3可促进胰腺癌、膀胱癌及乳腺癌细胞的侵袭和转移,可作为预测癌症进展的潜在生物学指标之一。sB7-H3也可作为骨肉瘤、肝细胞癌的诊断及不良临床分期的潜在生物标志物[53-54]。然而,目前对于食管癌患者外周血中sB7-H3的研究较少,sB7-H3对食管癌发生发展的影响尚待研究。sB7-H3或可成为未来食管癌研究的一个新方向。

综上所述,B7-H3与多种肿瘤的临床病理学进展和不良预后相关。在食管癌患者中,B7-H3表达较高者肿瘤进展更快,预后也较差,B7-H3有望成为抗肿瘤免疫疗法潜在的分子靶标。深入探讨B7-H3与sB7-H3影响食管癌进展发生发展的分子机制,有助于食管恶性疾病的临床诊断及进展预测,同时还可以为抗B7-H3肿瘤免疫药物的研发和临床转化提供理论依据。

利益冲突: 所有作者声明不存在利益冲突。

参考文献
[1]
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424. [DOI]
[2]
FENG R, ZONG Y, CAO S, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22.
[3]
FAN J H, LIU Z Q, MAO X H, et al. Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017[J]. Cancer Med, 2020, 9(18): 6875-6887. [DOI]
[4]
KELLY R J. Emerging multimodality approaches to treat localized esophageal cancer[J]. J Natl Compr Canc Netw, 2019, 17(8): 1009-1014. [DOI]
[5]
刘丹丹, 孙惠杰, 赵丹丹, 等. 食管癌的诊断及治疗进展[J]. 癌症进展, 2018, 16(7): 804-806.
LIU D D, SUN H J, ZHAO D D, et al. Progress in diagnosis and treatment of esophageal cancer[J]. Cancer Progress, 2018, 16(7): 804-806. [CNKI]
[6]
KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104. [DOI]
[7]
BELLESOEUR A, TOROSSIAN N, AMIGORENA S, et al. Advances in theranostic biomarkers for tumor immunotherapy[J]. Curr Opin Chem Biol, 2020, 56: 79-90. [DOI]
[8]
CHEN L P, FLIES D B. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242. [DOI]
[9]
NI L, DONG C. New B7 family checkpoints in human cancers[J]. Mol Cancer Ther, 2017, 16(7): 1203-1211. [DOI]
[10]
LIU S, LIANG J, LIU Z, et al. The role of CD276 in cancers[J]. Front Oncol, 2021, 11: 654684. [DOI]
[11]
FLEM-KARLSEN K, FODSTAD Ø, TAN M, et al. B7-H3 in cancer-beyond immune regulation[J]. Trends Cancer, 2018, 4(6): 401-404. [DOI]
[12]
CHAPOVAL A I, NI J, LAU J S, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production[J]. Nat Immunol, 2001, 2(3): 269-274. [DOI]
[13]
ZHOU W T, JIN W L. B7-H3/CD276: an emerging cancer immunotherapy[J]. Front Immunol, 2021, 12: 701006. [DOI]
[14]
MICHELAKOS T, KONTOS F, BARAKAT O, et al. B7-H3 targeted antibody-based immunotherapy of malignant diseases[J]. Expert Opin Biol Ther, 2021, 21(5): 587-602. [DOI]
[15]
ZHANG G, HOU J, SHI J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4): 538-546. [DOI]
[16]
AZUMA T, SATO Y, OHNO T, et al. Serum soluble B7-H3 is a prognostic marker for patients with non-muscle-invasive bladder cancer[J]. PLoS One, 2020, 15(12): e0243379. [DOI]
[17]
YANG S, WEI W, ZHAO Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11): 1767-1773. [DOI]
[18]
GU D, AO X, YANG Y, et al. Soluble immune checkpoints in cancer: production, function and biological significance[J]. J Immunother Cancer, 2018, 6(1): 132. [DOI]
[19]
FLEM-KARLSEN K, FODSTAD Ø, NUNES-XAVIER C E. B7-H3 immune checkpoint protein in human cancer[J]. Curr Med Chem, 2020, 27(24): 4062-4086. [DOI]
[20]
孙楠, 刘新波, 曹娜娜, 等. B7-H3基因在食管鳞癌患者外周血中的表达及其临床意义[J]. 中国肿瘤外科杂志, 2019, 11(4): 247-250.
SUN N, LIU X B, CAO N N, et al. Expression of B7-H3 gene in peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance[J]. Chin J Surg Oncol, 2019, 11(4): 247-250. [DOI]
[21]
IMANISHI T, SAITO T. T cell co-stimulation and functional modulation by innate signals[J]. Trends Immunol, 2020, 41(3): 200-212. [DOI]
[22]
DU H, HIRABAYASHI K, AHN S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell, 2019, 35(2): 221-237.e8. [DOI]
[23]
ZHANG C, CHEN Y, LI F, et al. B7-H3 is spliced by SRSF3 in colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(2): 311-321. [DOI]
[24]
CHAPOVAL A, NI J, LAU J, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production[J]. Nat Immunol, 2001, 2(3): 269-274. [DOI]
[25]
HAN S, WANG Y, SHI X, et al. Negative roles of B7-H3 and B7-H4 in the microenvironment of cervical cancer[J]. Exp Cell Res, 2018, 371(1): 222-230. [DOI]
[26]
SHAO L J, HE Q, WANG J B, et al. MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3[J]. Cell Death Discov, 2021, 7(1): 145. [DOI]
[27]
CHENG N, BEI Y, SONG Y, et al. B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy[J]. Biochem Pharmacol, 2021, 183: 114298. [DOI]
[28]
GAO Y, FANG P, LI W J, et al. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma[J]. Mol Immunol, 2020, 117: 20-28. [DOI]
[29]
YU T, ZHANG T, LU X, et al. B7-H3 promotes metastasis, proliferation, and epithelial-mesenchymal transition in lung adenocarcinoma[J]. Onco Targets Ther, 2018, 11: 4693-4700. [DOI]
[30]
ZHAN S H, LIU Z J, ZHANG M, et al. Overexpression of B7-H3 in α-SMA-positive fibroblasts is associated with cancer progression and survival in gastric adenocarcinomas[J]. Front Oncol, 2019, 9: 1466.
[31]
ZHANG T, WANG F, WU J, et al. Clinical correlation of B7-H3 and B3GALT4 with the prognosis of colorectal cancer[J]. World J Gastroenterol, 2018, 24(31): 3538-3546. [DOI]
[32]
金玉芬, 张婷, 姜新, 等. B7-H3在结直肠癌中的研究进展[J]. 癌症进展, 2020, 18(17): 1740-1743, 1829.
JIN Y F, ZHANG T, JIANG X, et al. Research progress of B7-H3 in colorectal cancer[J]. Cancer Progress, 2020, 18(17): 1740-1743, 1829. [CNKI]
[33]
ZHONG C H, TAO B, CHEN Y T, et al. B7-H3 regulates glioma growth and cell invasion through a JAK2/STAT3/Slug-dependent signaling pathway[J]. Onco Targets Ther, 2020, 13: 2215-2224. [DOI]
[34]
陈俊俊, 顾文栋, 陈陆俊, 等. 协同刺激分子B7-H3在食管癌中的表达[J]. 中华实验外科杂志, 2013, 30(3): 536-538.
CHEN J J, GU W D, CHEN L J, et al. Expression of costimulatory molecule B7-H3 in esophageal cancer[J]. Chin J Exp Surg, 2013, 30(3): 536-538. [DOI]
[35]
刘新波, 康富标, 曹娜娜, 等. B7-H3分子表达与食管癌复发转移的相关性研究[J]. 解放军医药杂志, 2019, 31(10): 23-26, 35.
LIU X B, KANG F B, CAO N N, et al. The relationship between B7-H3 molecular expression and recurrence and metastasis of esophageal cancer[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2019, 31(10): 23-26, 35. [CNKI]
[36]
王琪, 梁晓东, 邱静, 等. 食管鳞状细胞癌组织中B7-H3和CD44的表达及其临床意义[J]. 临床与实验病理学杂志, 2021, 37(8): 976-979.
WANG Q, LIANG X D, QIU J, et al. Expression and clinical significance of B7-H3 and CD44 in esophageal squamous cell carcinoma[J]. Chinese Journal of Clinical and Experimental Pathology, 2021, 37(8): 976-979. [DOI]
[37]
RASIC P, JOVANOVIC-TUCOVIC M, JEREMIC M, et al. B7 homologue 3 as a prognostic biomarker and potential therapeutic target in gastrointestinal tumors[J]. World J Gastrointest Oncol, 2021, 13(8): 799-821. [DOI]
[38]
王琦, 陈陆俊, 陆明洋, 等. 共刺激分子B7-H3调节食管癌细胞Eca-109生物学特性的研究[J]. 中华实验外科杂志, 2017, 34(12): 2165-2168.
WANG Q, CHEN L J, LU M Y, et al. Experimental study on the contribution of costimulatory molecule B7-H3 in regulation of the biological function of human esophageal cancer cell line Eca-109[J]. Chinese Journal of Experimental Surgery, 2017, 34(12): 2165-2168. [DOI]
[39]
李鹏飞. 共刺激分子B7-H3对食管癌细胞生物学特性的影响及作用机制的研究[D]. 石家庄: 河北医科大学, 2016.
LI P F. Effect of co-stimulatory molecule B7-H3 on the biological characteristics of esophageal cancer cells and study on its mechanism[D]. Shijiazhuang: Hebei Medical University, 2016.
[40]
YUE G, TANG J, ZHANG L, et al. CD276 suppresses CAR-T cell function by promoting tumor cell glycolysis in esophageal squamous cell carcinoma[J]. J Gastrointest Oncol, 2021, 12(1): 38-51. [DOI]
[41]
CHEN L J, CHEN J, XU B, et al. B7-H3 expression associates with tumor invasion and patient's poor survival in human esophageal cancer[J]. Am J Transl Res, 2015, 7(12): 2646-2660.
[42]
WANG L, CAO N N, WANG S, et al. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma[J]. Tumour Biol, 2016, 37(3): 2961-2971. [DOI]
[43]
CHEN L J, XIE Q Q, WANG Z G, et al. Assessment of combined expression of B7-H3 and B7-H4 as prognostic marker in esophageal cancer patients[J]. Oncotarget, 2016, 7(47): 77237-77243. [DOI]
[44]
陈陆俊. 协同刺激分子B7-H1和B7-H3在食管癌中表达的临床意义及作用研究[D]. 苏州: 苏州大学, 2015.
CHEN L J. Clinical significance and contribution of the co-stimulatory molecules B7-H1 and B7-H3 in human esophageal cancer[D]. Suzhou: Soochow University, 2015.
[45]
ZHUANG M, DING X, SONG W, et al. Correlation of IL-6 and JAK2/STAT3 signaling pathway with prognosis of nasopharyngeal carcinoma patients[J]. Aging, 2021, 13(12): 16667-16683. [DOI]
[46]
WANG L, CAO L, WANG H, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway[J]. Oncotarget, 2017, 8(44): 76116-76128. [DOI]
[47]
ZENG R, DUAN L, KONG Y K, et al. Clinicopathological and prognostic role of MMP-9 in esophageal squamous cell carcinoma: a meta-analysis[J]. Chin J Cancer Res, 2013, 25(6): 637-645.
[48]
WAGENER-RYCZEK S, SCHOEMMEL M, KRAEMER M, et al. Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma[J]. Cancer Immunol Immunother, 2020, 69(4): 523-533. [DOI]
[49]
WU K Y, LIN K J, LI X Y, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731. [DOI]
[50]
王珊. B7-H3在人食管癌中的表达及其与肿瘤相关巨噬细胞相互作用的机制研究[D]. 石家庄: 河北医科大学, 2015.
WANG S. Expression and interactions mechanism of costimulatory molecule B7-H3 and tumor-associated macrophages in human esophageal cancer[D]. Shijiazhuang: Hebei Medical University, 2015.
[51]
轩玉静. CD276特异性嵌合抗原受体T细胞抗食管鳞癌效应的研究[D]. 郑州: 郑州大学, 2021.
XUAN Y J. Anti-tumor effect of CD276-specific chimeric antigen receptor T cells in esophageal equamous cell carcinoma[D]. Zhengzhou: Zhengzhou University, 2021.
[52]
XUAN Y J, SHENG Y Q, ZHANG D Q, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models[J]. Transl Oncol, 2021, 14(8): 101138. [DOI]
[53]
WANG L, KANG F B, ZHANG G C, et al. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma[J]. Cancer Cell Int, 2018, 18: 115. [DOI]
[54]
李成德, 全毅, 蔡健梅, 等. HBV相关原发性肝癌患者血清B7-H3与IL-21的表达及其临床意义[J]. 中国免疫学杂志, 2018, 34(4): 569-575.
LI C D, QUAN Y, CAI J M, et al. Expression and clinical significance of B7-H3 and IL-21 in serum of patients with HBV associated hepatocellular carcinoma[J]. Chinese Journal of Immunology, 2018, 34(4): 569-575. [DOI]

文章信息

引用本文
朱昱霖, 易忠权, 宋建祥. B7-H3在食管癌中的研究进展[J]. 中国临床医学, 2023, 30(5): 887-892.
ZHU Yu-lin, YI Zhong-quan, SONG Jian-xiang. Research progress of B7-H3 in esophageal cancer[J]. Chinese Journal of Clinical Medicine, 2023, 30(5): 887-892.
通信作者(Corresponding authors).
宋建祥, Tel: 0515-81608812, E-mail:jxsongycsy@163.com.
基金项目
江苏省第十五批“六大人才高峰”资助项目(WSW-282)
Foundation item
Supported by the 15th Batch of "Six Talent Peaks" Fund in Jiangsu Province (WSW-282)

工作空间