2. 南通大学医学院, 南通 226000;
3. 南通大学第六附属医院(盐城市第三人民医院)中心实验室, 盐城 224000
2. Nantong Universty Medical School, Nantong 226000, Jiangsu, China;
3. Department of Central Laboratory, the Sixth Affiliated Hospital of Nantong University (Yancheng Third People's Hospital), Yancheng 224000, Jiangsu, China
食管癌发病率较高,近年来已上升为全球癌症第7位,主要包括鳞状细胞癌和腺癌两种病理类型,预后较差[1]。亚洲是食管癌高发地区,在中国,食管癌的发病率和死亡率均居前5位[2]。医疗水平的发展对食管癌患者预期寿命的改善较为有限,其5年生存率目前仍不足20%[3]。食管癌预后差的主要原因为早期临床症状不明显,患者就诊时分期常已较晚[4]。增加术前新辅助化疗及术后放疗等进行综合抗肿瘤治疗,仍不能改善患者预后[5]。免疫疗法可重新激活免疫系统抗肿瘤效应,并抑制肿瘤免疫逃逸[6]。免疫检查点抑制剂为肿瘤免疫治疗的新变革[7]。识别新的特异生物标志物可以为肿瘤的免疫疗法提供新思路,进而改善肿瘤治疗效果和患者预后。
T细胞在多种免疫反应中发挥关键作用,其活化需要双重信号刺激:第一信号由T细胞受体(TCR)与多肽结合的主要组织相容性复合物(MHC)相互作用产生;第二信号由T细胞与抗原呈递细胞(APC)上配体的共刺激分子的相互作用产生[8]。与共刺激分子的相互作用为激活T细胞所必需,决定T细胞是活化增殖还是转变为无反应状态或凋亡[8]。B7家族是重要的共刺激分子家族之一,可以产生刺激信号或抑制信号来增强或抑制T细胞在免疫反应中的活性[9]。B7-H3(CD276)成员为重要免疫检查点,在包括食管癌在内的多种肿瘤进展中发挥重要的免疫调节作用,可能为食管癌的潜在生物标志物[10-11]。本文就近年来B7-H3在食管癌进展中作用的相关研究作一综述。
1 B7-H3的结构与表达 1.1 B7-H3的分子结构与亚型B7-H3最初由Chapoval等[12]于2001年在人树突状细胞的基因库中发现,主要以膜蛋白形式和可溶性形式存在。膜蛋白形式的B7-H3在人体内是一种由15号染色体编码的包含316个氨基酸的Ⅰ型跨膜蛋白,分子结构与B7-H1(PD-L1)相似[13]。B7-H3有2种结构:2Ig-B7-H3和4Ig-B7-H3。2Ig-B7-H3可表达于小鼠与人体细胞,而4Ig-B7-H3仅表达于人体细胞[13-14]。B7-H3的2种结构体在T细胞的免疫激活中发挥相反的生物学效应:2Ig-B7-H3分子主要通过与T细胞表面正性刺激受体相结合来激活T细胞及免疫因子;4Ig-B7-H3则通过与T细胞表面负性受体相结合,限制其免疫应答[13]。2008年,Zhang等[15]首先证实,B7-H3的可溶性形式(sB7-H3)可以与膜蛋白形式的B7-H3竞争性结合T细胞上的相关受体。但sB7-H3的具体调控作用目前尚不清楚。sB7-H3由金属蛋白酶剪切修饰膜蛋白形成,可用于预测胰腺癌、膀胱癌等多种疾病的恶性进展[16-17]。另有研究[18]表明,具有正性调节免疫细胞功能的肿瘤坏死因子α(TNF-α)可以显著增加sB7-H3的分泌。
1.2 B7-H3的表达B7-H3转录本在人体各种组织中均广泛表达,而B7-H3蛋白则仅在一些肿瘤中高表达[19]。该现象提示,严格的转录后修饰可能对其表达有调控作用。但是,目前人体内B7-H3受体与其作用机制仍有争议。有研究[20]表明,髓细胞样触发受体(TREML2)-样转录物2(TLT-2)可能是小鼠体内B7-H3的一个潜在受体。TLT-2可以与细胞表面B7-H3结合,使信号传至T细胞,促使白细胞介素2(IL-2)和γ干扰素(IFN-γ)的生成增加,进而增强机体免疫功能;外周血中sB7-H3的表达可能与组织中膜蛋白形式B7-H3的表达有关,可能原因为sB7-H3由膜蛋白剪切修饰产生。
2 B7-H3与免疫反应T细胞在免疫应答中的激活需要共刺激信号调控。根据调控作用,共刺激信号包括激活T细胞、强化T细胞免疫反应的正性共刺激信号,以及限制T细胞活化增殖、抑制其免疫反应,从而促进免疫逃逸的负性共刺激信号[21]。而B7-H3在免疫系统中发挥正负双重调节作用:一方面,B7-H3通过提供正性共刺激信号来刺激T细胞活化,增强免疫反应[12, 22];另一方面,B7-H3通过提供负性共刺激信号来抑制T细胞活化和效应细胞因子的产生,促使肿瘤免疫逃逸[23]。B7-H3在肿瘤免疫中的双重调节作用可能与多种通路协调作用有关。
Chapoval等[12]用抗CD3抗体模拟TCR信号时,首次发现B7-H3可以为CD4+T细胞和CD8+T细胞呈递活化共刺激信号,强化细胞毒性T细胞的诱导,选择性刺激IFN-γ的产生。T细胞的这种正性刺激作用在小鼠肿瘤模型中也被发现[24]。Han等[25]则发现,B7-H3能通过促进IL-10和IFN-β1的产生来影响免疫微环境,发挥免疫抑制作用,从而促进肿瘤进展;Shao等[26]发现,抑制B7-H3的表达会促进T细胞的免疫功能,提高TNF-α和IFN-γ的表达水平,增强肿瘤抑制。除有关B7-H3对T细胞及免疫微环境发生作用的报道外,另有研究[27-28]指出,B7-H3可富集于巨噬细胞,使之发生M2型巨噬细胞极化,或通过促进细胞外基质重建及肿瘤血管生成来促进肿瘤转移,发挥免疫抑制作用。
B7-H3在肺癌、肝癌以及食管癌等肿瘤中高表达,且其表达水平与肿瘤的恶性进展和不良预后明显相关[29-32]。尽管有研究[33]发现,B7-H3可能通过调节JAK2/STAT3途径来影响多种肿瘤的进展,但该结果尚待进一步证实。总之,作为T细胞反应的共刺激或共抑制的双重作用因子,B7-H3在不同研究中的不同表现可能与调控其作用的通路有关。B7-H3相关受体及发挥作用的分子机制仍待进一步探讨。
3 B7-H3在食管癌中的作用 3.1 B7-H3在食管癌组织中的表达情况陈俊俊等[34]于2013年进行了B7-H3在食管癌中作用的研究,发现B7-H3在食管肿瘤组织中高表达,并与更深的肿瘤浸润及更差的患者预后密切相关。这提示B7-H3对食管癌的免疫微环境可能主要发挥负性调节作用。目前已证实,B7-H3在食管肿瘤组织中高表达,在癌旁及正常组织中低表达或不表达,且其表达与肿瘤的进展、预后及复发密切相关[35-37]。B7-H3高表达的食管癌患者疾病进展常较为迅速,肿瘤更易浸润侵袭、淋巴转移较早、预后较差,更易复发。沉默食管癌细胞的B7-H3基因后,细胞迁移及侵袭能力会受到较为明显的抑制[38]。目前B7-H3能否增强食管肿瘤细胞的增殖能力存在争议[38-39],但已明确B7-H3高表达促进肿瘤侵袭。此外,另有研究[39]表明,B7-H3表达与食管肿瘤的血管增生能力有关,抑制B7-H3表达能明显减少肿瘤血管新生,并促进肿瘤细胞凋亡。上述研究提示,B7-H3可作为食管癌免疫治疗的潜在分子靶点,其在食管癌中的表达水平对预测患者预后有重要参考价值。
3.2 B7-H3在食管癌中的免疫调节作用B7-H3虽然对免疫反应发挥双重作用,但在食管癌免疫中主要发挥负性调节作用。首先,B7-H3一般抑制食管癌患者的T细胞活性。CD3+T淋巴细胞与CD8+T淋巴细胞分别代表总T细胞及细胞毒性T细胞,在肿瘤免疫微环境中均发挥重要作用,其数量减少或功能活性降低会严重损害机体的抗肿瘤免疫能力。而B7-H3在食管癌中的表达与CD8+、CD3+T淋巴细胞的浸润程度负相关[40-42],可能通过抑制T细胞活性来参与肿瘤的免疫逃逸。其次,B7-H3可能通过联合B7家族的其他成员(B7-H1、B7-H4)来共同控制食管癌的肿瘤免疫。B7-H3和B7-H4高表达与肿瘤浸润深度、TNM分期、淋巴结转移及预后相关[43]。B7-H3与B7-H1在食管癌中共表达的作用与B7-H3联合B7-H4共表达相似,能抑制T淋巴细胞在肿瘤组织中的浸润[44]。体外实验[43-44]显示,B7-H3与B7家族其他成员共表达可通过负性调控肿瘤细胞自身的增殖、迁移及侵袭能力来促进食管癌的发生与发展。
B7-H3还可以通过调控相关炎症因子的表达来影响食管癌的进展。李鹏飞[39]研究发现,沉默B7-H3可使食管癌细胞IL-6的分泌受到抑制。IL-6是JAK2/STAT3信号通路的激活因子[45],而JAK2/STAT3信号通路可以通过调控基质金属蛋白酶(MMPs)与血管内皮生长因子(VEGF)来影响细胞外基质与血管生成[46]。
MMPs能降解细胞外基质,为肿瘤的侵袭转移创造条件。有研究[39, 47]证实,MMP-7、MMP-9过表达会促进食管癌的侵袭转移,而食管癌细胞中的B7-H3基因受到抑制时,MMP-7、MMP-9的表达受到明显抑制。VEGF能通过促进肿瘤内新生血管的生长来影响肿瘤增殖、侵袭与转移;VEGF在高表达B7-H3的食管癌中过表达[39]。
因此,B7-H3在食管癌中可能通过刺激IL-6分泌激活JAK2/STAT3信号通路,促进MMP-7、MMP-9过表达降解细胞外基质,同时促进VEGF过表达使肿瘤内血管增生,进而促进食管癌进展。同时,B7-H3过表达活化STAT3信号通路后会诱导PKM2磷酸化,从而促进肿瘤糖代谢[37]。而肿瘤中过度活跃的糖代谢会增强肿瘤侵袭与转移活力,从而促进肿瘤进展。此外,B7-H3对食管癌中IFN-γ与TNF-α也有抑制作用[48]。B7-H3可能通过抑制具有强化免疫反应能力的IFN-γ与TNF-α表达来抑制食管癌组织中T淋巴细胞的激活,加强肿瘤细胞免疫逃逸。
B7-H3与肿瘤相关巨噬细胞(TAM)关联控制食管癌的肿瘤免疫。TAM是肿瘤微环境的另一个关键组成部分,与肿瘤发生、进展及药物抗性关系密切。TAM主要包含抗肿瘤M1型(经典活化状态)和亲肿瘤M2型(选择活化状态)。这两种表型在肿瘤进展中发挥相反作用。M1类TAM为宿主防御癌症发生发展的主要因子之一;M2类TAM与肿瘤不良预后密切相关,可降低化疗和放疗疗效,通过抑制CD8+T细胞功能促进肿瘤进展[49]。体外实验[50]发现,抑制B7-H3表达可降低M2类TAM极化比例。B7-H3可能参与诱导TAM的M2类极化。上述研究提示,B7-H3在食管癌中可能通过参与调节肿瘤微环境TAM表型极化,来调控肿瘤免疫。
为检测B7-H3作为免疫治疗靶点的效能,有研究[51-52]构建了B7-H3特异性CAR-T细胞,证实该CAR-T细胞对食管癌的原代肿瘤细胞活性和肿瘤生长有显著抑制能力,并显著延长小鼠生存期。针对B7-H3的免疫靶向治疗或可成为食管恶性肿瘤的潜在治疗手段。
有研究[11, 16-17]表明,sB7-H3可促进胰腺癌、膀胱癌及乳腺癌细胞的侵袭和转移,可作为预测癌症进展的潜在生物学指标之一。sB7-H3也可作为骨肉瘤、肝细胞癌的诊断及不良临床分期的潜在生物标志物[53-54]。然而,目前对于食管癌患者外周血中sB7-H3的研究较少,sB7-H3对食管癌发生发展的影响尚待研究。sB7-H3或可成为未来食管癌研究的一个新方向。
综上所述,B7-H3与多种肿瘤的临床病理学进展和不良预后相关。在食管癌患者中,B7-H3表达较高者肿瘤进展更快,预后也较差,B7-H3有望成为抗肿瘤免疫疗法潜在的分子靶标。深入探讨B7-H3与sB7-H3影响食管癌进展发生发展的分子机制,有助于食管恶性疾病的临床诊断及进展预测,同时还可以为抗B7-H3肿瘤免疫药物的研发和临床转化提供理论依据。
利益冲突: 所有作者声明不存在利益冲突。
[1] |
BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68(6): 394-424.
[DOI]
|
[2] |
FENG R, ZONG Y, CAO S, et al. Current cancer situation in China: good or bad news from the 2018 Global Cancer Statistics?[J]. Cancer Commun (Lond), 2019, 39(1): 22.
|
[3] |
FAN J H, LIU Z Q, MAO X H, et al. Global trends in the incidence and mortality of esophageal cancer from 1990 to 2017[J]. Cancer Med, 2020, 9(18): 6875-6887.
[DOI]
|
[4] |
KELLY R J. Emerging multimodality approaches to treat localized esophageal cancer[J]. J Natl Compr Canc Netw, 2019, 17(8): 1009-1014.
[DOI]
|
[5] |
刘丹丹, 孙惠杰, 赵丹丹, 等. 食管癌的诊断及治疗进展[J]. 癌症进展, 2018, 16(7): 804-806. LIU D D, SUN H J, ZHAO D D, et al. Progress in diagnosis and treatment of esophageal cancer[J]. Cancer Progress, 2018, 16(7): 804-806. [CNKI] |
[6] |
KENNEDY L B, SALAMA A K S. A review of cancer immunotherapy toxicity[J]. CA Cancer J Clin, 2020, 70(2): 86-104.
[DOI]
|
[7] |
BELLESOEUR A, TOROSSIAN N, AMIGORENA S, et al. Advances in theranostic biomarkers for tumor immunotherapy[J]. Curr Opin Chem Biol, 2020, 56: 79-90.
[DOI]
|
[8] |
CHEN L P, FLIES D B. Molecular mechanisms of T cell co-stimulation and co-inhibition[J]. Nat Rev Immunol, 2013, 13(4): 227-242.
[DOI]
|
[9] |
NI L, DONG C. New B7 family checkpoints in human cancers[J]. Mol Cancer Ther, 2017, 16(7): 1203-1211.
[DOI]
|
[10] |
LIU S, LIANG J, LIU Z, et al. The role of CD276 in cancers[J]. Front Oncol, 2021, 11: 654684.
[DOI]
|
[11] |
FLEM-KARLSEN K, FODSTAD Ø, TAN M, et al. B7-H3 in cancer-beyond immune regulation[J]. Trends Cancer, 2018, 4(6): 401-404.
[DOI]
|
[12] |
CHAPOVAL A I, NI J, LAU J S, et al. B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production[J]. Nat Immunol, 2001, 2(3): 269-274.
[DOI]
|
[13] |
ZHOU W T, JIN W L. B7-H3/CD276: an emerging cancer immunotherapy[J]. Front Immunol, 2021, 12: 701006.
[DOI]
|
[14] |
MICHELAKOS T, KONTOS F, BARAKAT O, et al. B7-H3 targeted antibody-based immunotherapy of malignant diseases[J]. Expert Opin Biol Ther, 2021, 21(5): 587-602.
[DOI]
|
[15] |
ZHANG G, HOU J, SHI J, et al. Soluble CD276 (B7-H3) is released from monocytes, dendritic cells and activated T cells and is detectable in normal human serum[J]. Immunology, 2008, 123(4): 538-546.
[DOI]
|
[16] |
AZUMA T, SATO Y, OHNO T, et al. Serum soluble B7-H3 is a prognostic marker for patients with non-muscle-invasive bladder cancer[J]. PLoS One, 2020, 15(12): e0243379.
[DOI]
|
[17] |
YANG S, WEI W, ZHAO Q. B7-H3, a checkpoint molecule, as a target for cancer immunotherapy[J]. Int J Biol Sci, 2020, 16(11): 1767-1773.
[DOI]
|
[18] |
GU D, AO X, YANG Y, et al. Soluble immune checkpoints in cancer: production, function and biological significance[J]. J Immunother Cancer, 2018, 6(1): 132.
[DOI]
|
[19] |
FLEM-KARLSEN K, FODSTAD Ø, NUNES-XAVIER C E. B7-H3 immune checkpoint protein in human cancer[J]. Curr Med Chem, 2020, 27(24): 4062-4086.
[DOI]
|
[20] |
孙楠, 刘新波, 曹娜娜, 等. B7-H3基因在食管鳞癌患者外周血中的表达及其临床意义[J]. 中国肿瘤外科杂志, 2019, 11(4): 247-250. SUN N, LIU X B, CAO N N, et al. Expression of B7-H3 gene in peripheral blood of patients with esophageal squamous cell carcinoma and its clinical significance[J]. Chin J Surg Oncol, 2019, 11(4): 247-250. [DOI] |
[21] |
IMANISHI T, SAITO T. T cell co-stimulation and functional modulation by innate signals[J]. Trends Immunol, 2020, 41(3): 200-212.
[DOI]
|
[22] |
DU H, HIRABAYASHI K, AHN S, et al. Antitumor responses in the absence of toxicity in solid tumors by targeting B7-H3 via chimeric antigen receptor T cells[J]. Cancer Cell, 2019, 35(2): 221-237.e8.
[DOI]
|
[23] |
ZHANG C, CHEN Y, LI F, et al. B7-H3 is spliced by SRSF3 in colorectal cancer[J]. Cancer Immunol Immunother, 2021, 70(2): 311-321.
[DOI]
|
[24] |
CHAPOVAL A, NI J, LAU J, et al. B7-H3: A costimulatory molecule for T cell activation and IFN-γ production[J]. Nat Immunol, 2001, 2(3): 269-274.
[DOI]
|
[25] |
HAN S, WANG Y, SHI X, et al. Negative roles of B7-H3 and B7-H4 in the microenvironment of cervical cancer[J]. Exp Cell Res, 2018, 371(1): 222-230.
[DOI]
|
[26] |
SHAO L J, HE Q, WANG J B, et al. MicroRNA-326 attenuates immune escape and prevents metastasis in lung adenocarcinoma by targeting PD-L1 and B7-H3[J]. Cell Death Discov, 2021, 7(1): 145.
[DOI]
|
[27] |
CHENG N, BEI Y, SONG Y, et al. B7-H3 augments the pro-angiogenic function of tumor-associated macrophages and acts as a novel adjuvant target for triple-negative breast cancer therapy[J]. Biochem Pharmacol, 2021, 183: 114298.
[DOI]
|
[28] |
GAO Y, FANG P, LI W J, et al. LncRNA NEAT1 sponges miR-214 to regulate M2 macrophage polarization by regulation of B7-H3 in multiple myeloma[J]. Mol Immunol, 2020, 117: 20-28.
[DOI]
|
[29] |
YU T, ZHANG T, LU X, et al. B7-H3 promotes metastasis, proliferation, and epithelial-mesenchymal transition in lung adenocarcinoma[J]. Onco Targets Ther, 2018, 11: 4693-4700.
[DOI]
|
[30] |
ZHAN S H, LIU Z J, ZHANG M, et al. Overexpression of B7-H3 in α-SMA-positive fibroblasts is associated with cancer progression and survival in gastric adenocarcinomas[J]. Front Oncol, 2019, 9: 1466.
|
[31] |
ZHANG T, WANG F, WU J, et al. Clinical correlation of B7-H3 and B3GALT4 with the prognosis of colorectal cancer[J]. World J Gastroenterol, 2018, 24(31): 3538-3546.
[DOI]
|
[32] |
金玉芬, 张婷, 姜新, 等. B7-H3在结直肠癌中的研究进展[J]. 癌症进展, 2020, 18(17): 1740-1743, 1829. JIN Y F, ZHANG T, JIANG X, et al. Research progress of B7-H3 in colorectal cancer[J]. Cancer Progress, 2020, 18(17): 1740-1743, 1829. [CNKI] |
[33] |
ZHONG C H, TAO B, CHEN Y T, et al. B7-H3 regulates glioma growth and cell invasion through a JAK2/STAT3/Slug-dependent signaling pathway[J]. Onco Targets Ther, 2020, 13: 2215-2224.
[DOI]
|
[34] |
陈俊俊, 顾文栋, 陈陆俊, 等. 协同刺激分子B7-H3在食管癌中的表达[J]. 中华实验外科杂志, 2013, 30(3): 536-538. CHEN J J, GU W D, CHEN L J, et al. Expression of costimulatory molecule B7-H3 in esophageal cancer[J]. Chin J Exp Surg, 2013, 30(3): 536-538. [DOI] |
[35] |
刘新波, 康富标, 曹娜娜, 等. B7-H3分子表达与食管癌复发转移的相关性研究[J]. 解放军医药杂志, 2019, 31(10): 23-26, 35. LIU X B, KANG F B, CAO N N, et al. The relationship between B7-H3 molecular expression and recurrence and metastasis of esophageal cancer[J]. Medical & Pharmaceutical Journal of Chinese People's Liberation Army, 2019, 31(10): 23-26, 35. [CNKI] |
[36] |
王琪, 梁晓东, 邱静, 等. 食管鳞状细胞癌组织中B7-H3和CD44的表达及其临床意义[J]. 临床与实验病理学杂志, 2021, 37(8): 976-979. WANG Q, LIANG X D, QIU J, et al. Expression and clinical significance of B7-H3 and CD44 in esophageal squamous cell carcinoma[J]. Chinese Journal of Clinical and Experimental Pathology, 2021, 37(8): 976-979. [DOI] |
[37] |
RASIC P, JOVANOVIC-TUCOVIC M, JEREMIC M, et al. B7 homologue 3 as a prognostic biomarker and potential therapeutic target in gastrointestinal tumors[J]. World J Gastrointest Oncol, 2021, 13(8): 799-821.
[DOI]
|
[38] |
王琦, 陈陆俊, 陆明洋, 等. 共刺激分子B7-H3调节食管癌细胞Eca-109生物学特性的研究[J]. 中华实验外科杂志, 2017, 34(12): 2165-2168. WANG Q, CHEN L J, LU M Y, et al. Experimental study on the contribution of costimulatory molecule B7-H3 in regulation of the biological function of human esophageal cancer cell line Eca-109[J]. Chinese Journal of Experimental Surgery, 2017, 34(12): 2165-2168. [DOI] |
[39] |
李鹏飞. 共刺激分子B7-H3对食管癌细胞生物学特性的影响及作用机制的研究[D]. 石家庄: 河北医科大学, 2016. LI P F. Effect of co-stimulatory molecule B7-H3 on the biological characteristics of esophageal cancer cells and study on its mechanism[D]. Shijiazhuang: Hebei Medical University, 2016. |
[40] |
YUE G, TANG J, ZHANG L, et al. CD276 suppresses CAR-T cell function by promoting tumor cell glycolysis in esophageal squamous cell carcinoma[J]. J Gastrointest Oncol, 2021, 12(1): 38-51.
[DOI]
|
[41] |
CHEN L J, CHEN J, XU B, et al. B7-H3 expression associates with tumor invasion and patient's poor survival in human esophageal cancer[J]. Am J Transl Res, 2015, 7(12): 2646-2660.
|
[42] |
WANG L, CAO N N, WANG S, et al. Roles of coinhibitory molecules B7-H3 and B7-H4 in esophageal squamous cell carcinoma[J]. Tumour Biol, 2016, 37(3): 2961-2971.
[DOI]
|
[43] |
CHEN L J, XIE Q Q, WANG Z G, et al. Assessment of combined expression of B7-H3 and B7-H4 as prognostic marker in esophageal cancer patients[J]. Oncotarget, 2016, 7(47): 77237-77243.
[DOI]
|
[44] |
陈陆俊. 协同刺激分子B7-H1和B7-H3在食管癌中表达的临床意义及作用研究[D]. 苏州: 苏州大学, 2015. CHEN L J. Clinical significance and contribution of the co-stimulatory molecules B7-H1 and B7-H3 in human esophageal cancer[D]. Suzhou: Soochow University, 2015. |
[45] |
ZHUANG M, DING X, SONG W, et al. Correlation of IL-6 and JAK2/STAT3 signaling pathway with prognosis of nasopharyngeal carcinoma patients[J]. Aging, 2021, 13(12): 16667-16683.
[DOI]
|
[46] |
WANG L, CAO L, WANG H, et al. Cancer-associated fibroblasts enhance metastatic potential of lung cancer cells through IL-6/STAT3 signaling pathway[J]. Oncotarget, 2017, 8(44): 76116-76128.
[DOI]
|
[47] |
ZENG R, DUAN L, KONG Y K, et al. Clinicopathological and prognostic role of MMP-9 in esophageal squamous cell carcinoma: a meta-analysis[J]. Chin J Cancer Res, 2013, 25(6): 637-645.
|
[48] |
WAGENER-RYCZEK S, SCHOEMMEL M, KRAEMER M, et al. Immune profile and immunosurveillance in treatment-naive and neoadjuvantly treated esophageal adenocarcinoma[J]. Cancer Immunol Immunother, 2020, 69(4): 523-533.
[DOI]
|
[49] |
WU K Y, LIN K J, LI X Y, et al. Redefining tumor-associated macrophage subpopulations and functions in the tumor microenvironment[J]. Front Immunol, 2020, 11: 1731.
[DOI]
|
[50] |
王珊. B7-H3在人食管癌中的表达及其与肿瘤相关巨噬细胞相互作用的机制研究[D]. 石家庄: 河北医科大学, 2015. WANG S. Expression and interactions mechanism of costimulatory molecule B7-H3 and tumor-associated macrophages in human esophageal cancer[D]. Shijiazhuang: Hebei Medical University, 2015. |
[51] |
轩玉静. CD276特异性嵌合抗原受体T细胞抗食管鳞癌效应的研究[D]. 郑州: 郑州大学, 2021. XUAN Y J. Anti-tumor effect of CD276-specific chimeric antigen receptor T cells in esophageal equamous cell carcinoma[D]. Zhengzhou: Zhengzhou University, 2021. |
[52] |
XUAN Y J, SHENG Y Q, ZHANG D Q, et al. Targeting CD276 by CAR-T cells induces regression of esophagus squamous cell carcinoma in xenograft mouse models[J]. Transl Oncol, 2021, 14(8): 101138.
[DOI]
|
[53] |
WANG L, KANG F B, ZHANG G C, et al. Clinical significance of serum soluble B7-H3 in patients with osteosarcoma[J]. Cancer Cell Int, 2018, 18: 115.
[DOI]
|
[54] |
李成德, 全毅, 蔡健梅, 等. HBV相关原发性肝癌患者血清B7-H3与IL-21的表达及其临床意义[J]. 中国免疫学杂志, 2018, 34(4): 569-575. LI C D, QUAN Y, CAI J M, et al. Expression and clinical significance of B7-H3 and IL-21 in serum of patients with HBV associated hepatocellular carcinoma[J]. Chinese Journal of Immunology, 2018, 34(4): 569-575. [DOI] |