文章快速检索     高级检索
   中国临床医学  2023, Vol. 30 Issue (2): 199-208      DOI: 10.12025/j.issn.1008-6358.2023.20222310
0
阿尔茨海默病临床治疗研究进展
黄强1 , 桑绍明1 , 潘晓黎1 , 钟春玖1,2     
1. 复旦大学附属中山医院神经内科,上海 200032;
2. 复旦大学脑科学研究院,脑科学协同创新中心,医学神经生物学国家重点实验室,上海 200032
摘要:阿尔茨海默病(Alzheimer disease, AD)是最常见的神经退行性疾病之一, 其高患病率将带来沉重的疾病负担。由于AD的发病机制尚不明确, 目前有限的AD治疗药物只能延缓病情进展, 却无法逆转病程。近年来, 国内外进行了多个药物及非药物干预临床研究, 对应的结果也相继披露。本文就近期开展的AD临床诊疗方法进行总结。
关键词阿尔茨海默病    药物研发    非药物治疗    
Advance on the clinical research of Alzheimer's treatment
HUANG Qiang1 , SANG Shao-ming1 , PAN Xiao-li1 , ZHONG Chun-jiu1,2     
1. Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
2. Institutes of Brain Science, Collaborative Innovation Center for Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
Abstract: Alzheimer disease (AD) is one of the most prevalent neurodegenerative diseases, and its high morbidity would lead to heavy disease burden.As the pathogenesis of AD remains unclarified, current therapies could only slow down the disease progression rather than reverse the disease course.For decades, multiple non-drug treatments have been tested in the clinical trials as well as treatments involving novel developed drugs, and the corresponding outcomes have been disclosed.We reviewed the recently finished and on-going clinical trials focusing on AD in this article.
Key words: Alzheimer disease    drug development    non-drug treatment    

阿尔茨海默病(Alzheimer disease, AD)是最常见的痴呆类型,常累及中老年人群[1]。2015年,中国60岁以上人群中有983万AD患者和3 877万轻度认知障碍(mild cognitive impairment, MCI)患者,约1 677.4亿美元用于相关患者的治疗和照护,到2030年这一花费预计达到5 074.9亿美元[2]。AD具有患病率高、病程迁延、干预手段有限的特点,随着我国老龄化进程加速,AD势必带来沉重的疾病负担[3]

近年来,随着对生物标志物研究的深入,AD被认为是一个动态、连续的发展过程,脑病理学改变或早于临床症状15~20年。2007年,国际工作小组(International Working Group, IWG)首次将生物标志物纳入AD诊断标准,并于2014年再次更新(IWG-2)[4]。IWG-2标准在扩充AD分类的同时,进一步将AD诊断关口前移至临床前期[4-5],为AD早期筛查和早期干预提供了可能。目前,美国食品药品监督管理局(Food and Drug Administration, FDA)批准的AD用药主要包含2类:胆碱酯酶抑制剂和N-甲基-D-天冬氨酸(NMDA)受体拮抗剂[6]。然而,上述2类药物仅能够短暂改善患者的认知症状,均无法逆转疾病进程[7]

1906年,德国神经病理学家Alois Alzheimer报道,AD患者脑内出现细胞外老年斑沉积、神经元内神经纤维缠结(neurofibrillary tangles, NFTs)及神经元丢失导致的脑萎缩,后续100多年AD的发病机制研究主要围绕上述3大核心病理改变开展[1]。其中,老年斑是由β-淀粉样蛋白(amyloid-β, Aβ)聚合形成,而NFTs是细胞内Tau蛋白异常磷酸化导致。家族性AD(familial Alzheimer’s disease, FAD)和唐氏综合征家系中,编码淀粉样前体蛋白(amyloid precusor protein, APP)的APP基因[8]被克隆,且APP基因突变与FAD密切相关。因此,“Aβ级联假说”成为AD发病机制的主流假说,奠定了AD的诊断、治疗干预及新药研发的基础[9]。2021年,FDA加速审批靶向清除Aβ单抗药物阿杜那单抗(Aducanumab),使得该药成为2003年后首款被批准治疗AD的新药。然而,由于2项Ⅲ期临床试验结果不一致以及治疗安全性问题,阿杜那单抗的应用颇具争议[10-11]。目前的证据表明:AD是具有多病理生理特征的复杂疾病[12]。基于不同的发病机制和致病假说,国内外学者开展了大量AD治疗的临床试验,本文就近年来AD治疗的研究进展进行综述。

1 新型抗AD药物 1.1 Aβ靶点

Aβ斑块一直被认为是AD的核心病理改变,长期以来,清除Aβ是抗AD新药开发的热门靶点之一。早在2014年,有学者在轻中度AD人群中开展了2项巴匹组单抗(Bapineuzumab)的Ⅲ期临床试验,分别聚焦APOE ε4携带者及非携带者。结果显示,在APOE ε4携带者中,使用0.5 mg/kg巴匹组单抗能显著延缓脑内Aβ沉积、降低脑脊液中p-Tau水平,但无法逆转受试者的认知水平下降的趋势[13]。此后,多项靶向清除Aβ单抗的新药临床试验[14-19]显示,AD患者脑内Aβ沉积减少,但认知功能并未改善(表 1)。

表 1 目前开展的靶向Aβ的单抗药物Ⅲ期临床试验
药物名称 靶标 入组人群 发布日期 注册号 结果
Solanezumab Aβ单体 显性遗传早发型AD患者 2013-01-03 NCT01760005 未达到改善认知的研究终点
    临床前期AD患者a 2013-12-11 NCT02008357 项目正在进行
Gantenerumab Aβ斑块及寡聚体 显性遗传早发型AD患者 2013-01-03 NCT01760005 未达到改善认知的研究终点
    前驱期至轻度AD患者 2018-02-23 NCT03444870 项目正在进行
    前驱期至轻度AD患者 2018-02-23 NCT03443973 项目终止
    AD患者 2020-04-09 NCT04339413 项目终止
    AD患者 2020-05-05 NCT04374253 项目正在进行
Aducanumab Aβ斑块及寡聚体 AD源性MCI,轻度AD 2015-06-23 NCT02477800 未到改善认知的研究终点
    AD源性MCI,轻度AD 2015-06-29 NCT02484547 达到改善认知的研究终点
    AD源性MCI,轻度AD 2020-01-27 NCT04241068 项目正在进行
Crenezumab 可溶性Aβ寡聚体 前驱期、轻度AD患者 2016-02-01 NCT02670083 未达到改善认知的研究终点
    前驱期、轻度AD患者 2017-04-14 NCT03114657 未达到改善认知的研究终点
Lecanemab Aβ原纤维 AD源性MCI,轻度ADb 2019-03-25 NCT03887455 达到改善认知的研究终点
    有Aβ沉积的临床前期AD患者,有中度Aβ沉积的早临床前期AD患者c 2020-07-13 NCT04468659 项目正在进行
Donanemab 焦谷氨酸化Aβ AD源性MCI,轻度AD 2020-06-18 NCT04437511 项目正在进行
Solanezumab:索拉珠单抗;Gantenerumab:更汀芦单抗;Aducanumab:阿杜那单抗;Crenezumab:克瑞组单抗;Lecanemab:仑卡奈单抗;Donanemab:多奈单抗。AD:阿尔茨海默病;MCI:轻度认知障碍。a证据支持受试者脑内存在Aβ沉积,但认知水平正常;b证据支持受试者脑内存在Tau病变;c PET检测、脑脊液、外周血生物标志物证据支持受试者脑内存在Aβ沉积。

阿杜那单抗是由渤健和礼来公司联合开发的一款人源化单克隆抗体药物,对聚集型Aβ蛋白(可溶性的寡聚体及不可溶性的原纤维)有高亲和力。阿杜那单抗在2项研究(ENGAGE、EMERGE)中均能显著减少受试者脑内Aβ沉积、降低血浆中p-Tau水平,但2项研究未能达到有效研究终点而提前终止。然而,2020年的EMERGE研究[20]通过回顾性分析得出阿杜那单抗达到显著改善受试者认知水平的研究终点,促使阿杜那单抗在2021年获得美国FDA加速批准用于AD治疗,引发AD药物研究领域的广泛争议[21],其最终疗效和安全性评价期待后续Ⅳ期开放性临床试验结果。近期,Roche公司开发的更汀芦单抗(Gantenerumab)的2项Ⅲ期临床研究(GRADUATEⅠ和GRADUATEⅡ)结果被披露:更汀芦单抗治疗组受试者相较于安慰剂组,脑内Aβ沉积明显减少,但依旧未达到改善认知功能的研究终点[22]。仑卡奈单抗(Lecanemab)是一款靶向结合Aβ原纤维的人源化IgG1抗体,MCI及轻度AD患者在接受治疗之后18个月,临床痴呆评分总和量表(CDR-SB)得分为1.21分,显著低于安慰剂组(1.66分, P<0.001),其他次要终点指标都有一定程度的改善[23]。纵观迄今披露的靶向Aβ单抗新药的研究结果,受试者使用后均可以明显减少脑内Aβ沉积,但绝大部分新药临床试验并未达到有效终点事件(表 1),说明清除脑内Aβ蛋白沉积的单一靶点治疗AD仍面临巨大挑战。一方面,靶向Aβ的单抗药物临床试验均报道了淀粉样蛋白相关影像异常(amyloid-related imaging abnormalities, ARIA),以脑微出血及脑水肿为甚[15-19, 24],其药物安全性需保持警惕。另一方面,Aβ在机体中承担着调控突触功能、促进神经元的生长和存活等重要生理功能[25],荟萃分析[26]提示高强度去除Aβ的免疫疗法将导致低获益风险比。

1.2 Tau蛋白靶点

Tau蛋白是微管相关蛋白的一种,参与构成神经细胞内骨架,AD患者神经细胞内Tau蛋白出现异常磷酸化,并聚集形成NFTs[27]。亚甲蓝(leuco-methylthioninium bis, LMTM)是一种小分子Tau蛋白聚集抑制剂,可选择性抑制Tau蛋白聚集。一项针对轻中度AD患者的Ⅲ期临床试验分别给予受试者LMTM 75 mg和125 mg,同时又根据标准抗AD治疗方案分为LMTM单药组和LMTM加载组。结果显示,无论是单药组还是加载组,2种剂量的LMTM都不能给受试者带来改善认知的临床获益[28]。随后研究者将LMTM用药与AD患者共同用药间的交互作用作为协变量纳入分析,以全部受试者作为分析集,发现2种剂量的LMTM单药治疗能给受试者带来明显的认知改善获益[28]。基于上述发现,研究团队进一步改进研究方案及分析方法,比较LMTM 100 mg单药治疗组和对照组(无论是否使用抗AD药物)的认知水平差异,结果显示LMTM单药治疗可以改善受试者认知水平[29]。然而,这一结果可能与受试者基线认知水平不同相关,接受标准抗AD治疗患者的认知水平较差,而LMTM单药治疗的患者大多处于病程早期。因此,该结果有待大规模随机、对照临床试验证实。第二代Tau蛋白聚集抑制剂TRx0237正在进行针对轻中度AD患者的临床试验(表 2)。Gosuranemab靶向纤维状Tau蛋白的N-末端,可以清除异常聚集的Tau蛋白,但Ⅱ期临床试验表明其对轻度AD患者无临床获益(NCT03352557)。同样,2种靶向Tau蛋白的单抗药物替拉奈单抗(Tilavonemab)和泽格特奈单抗(Zagotenemab)未达到改善认知的主要研究终点(NCT03712787、NCT03518073)[30-31]。尽管许多研究提示Tau病变与AD患者的认知水平呈现明显的相关性,大部分研究均未进行靶向Tau分子显像以评估用药后脑内Tau蛋白病变的改变[32]。AADvac1是一款用于清除脑内病理性Tau蛋白的疫苗,含有Tau蛋白第294至305氨基酸位点组成的肽段,用于刺激机体产生免疫应答。Ⅱ期临床试验结果显示,轻度AD患者对AADvac1耐受性和安全性良好,其对患者认识功能和生活能力改善仍需进一步大规模临床试验明确[31]。另一款基于脂质体的疫苗ACI-35包含16个tau片段,在S396和S404位点磷酸化,并锚定在脂质双分子层中,激活免疫系统产生抗体。2项Ⅰa/Ⅱb临床试验证实在早期AD患者中应用具有较好的安全性和较高的免疫应答,期待进一步疗效报道。

表 2 目前进行中的部分靶向Tau的临床试验
药物名称 属性 靶标 入组人群 试验分期 发布日期 注册号
烟酰胺 膳食补充剂 组蛋白去乙酰化酶抑制剂 早期AD患者 Ⅱ期 2017-02-23 NCT03061474
BIIB080 反义寡核苷酸 抑制MAPT基因RNA 轻度AD患者 Ⅱ期 2017-06-14 NCT03186989
TRx0237 小分子药物 抑制Tau蛋白聚集 AD患者 Ⅲ期 2018-02-26 NCT03446001
Semorinemab 单克隆抗体 胞外Tau蛋白 中度AD患者 Ⅱ期 2019-02-04 NCT03828747
PU-AD 小分子药物 热休克蛋白90抑制剂 轻度AD患者 Ⅱ期 2020-03-17 NCT04311515
ACI-35 疫苗 病理性磷酸化Tau蛋白 早期AD患者 Ⅱ期 2020-06-24 NCT04445831
Bepranemab 单克隆抗体 Tau蛋白235–250位点 前驱期-轻度AD患者 Ⅱ期 2021-04-30 NCT04867616
E2814 单克隆抗体 Tau 显性遗传性AD源性轻度至中度认知障碍患者 Ⅱ期 2021-07-21 NCT04971733
LY3372689 小分子药物 O-糖苷酶抑制剂,促进Tau糖基化 AD患者 Ⅱ期 2021-10-01 NCT05063539
JNJ-63733657 单克隆抗体 Tau蛋白N末端,p-Tau217 早期AD患者 Ⅱ期 2021-11-06 NCT04619420
Semorinemab:西瑞奈单抗;Bepranemab:贝瑞奈单抗。AD:阿尔茨海默病;MAPT:微管相关蛋白τ。
1.3 神经炎症靶点

神经炎症在AD的发生发展过程中起着非常重要的作用,在疾病早期,激活的神经炎症能够保护神经系统功能,但在终末期阶段,过度激活的神经炎症会加速AD样脑病理,进而加剧患者的认知损害[32]。研究[33]显示,在AD早期患者体内CD8+ T细胞中CD38表达量显著上调,激活的CD8+ T细胞通过细胞毒性作用损伤神经系统。达妥木单抗(Daratumumab)是一种靶向作用于CD38的人源单克隆抗体,最初用于多发性骨髓瘤的治疗。达妥木单抗能通过血脑屏障,对轻中度AD患者的治疗效果正在接受临床试验评价(表 3)。来那度胺是一种抗肿瘤药物,具有调节免疫的功效,一项Ⅱ期的临床试验正在探讨来那度胺对MCI患者的治疗效果(NCT04032626)[34]。GB301是指AD患者自体Treg细胞,经过体外分离、扩增后重新回输入患者体内,进而调节患者的神经炎症(NCT03865017)。甘露特钠是我国全自主研发的抗AD药物,其靶向脑-肠轴修复神经炎症,从而改善患者的认知水平[35]。遗憾的是,该药的国际Ⅲ期临床试验已终止(NCT04520412)。小分子药物NE3107是一种β-雄甾三醇衍生物,能通过血脑屏障,具备胰岛素增敏及抗炎的作用。一项开放的单中心Ⅱ期临床研究发现,连续3个月口服NE3107(1天2次,1次20 mg)后,血清炎症标志物TNF-α水平降低,受试者的认知功能出现改善,同时脑脊液中p-Tau及Aβ42均较安慰剂组降低[26]。目前,NE3107正在进行Ⅲ期临床试验[36]。马赛替尼(Masitinib)是抑制蛋白质酪氨酸激酶活性的小分子药物,靶向肥大细胞及小胶质细胞改善神经炎症。连续口服12周马赛替尼(每天4.5 mg/kg)可以改善轻中度AD患者认知功能[37]。目前,正在开展新一轮的马赛替尼Ⅲ期临床试验(NCT05564169),但该研究未涉及TSPO PET显像评估受试者脑内小胶质细胞状态。

表 3 目前进行中的部分靶向神经炎症的临床试验
药物名称 属性 靶标 入组人群 试验分期 发布日期 注册号
孟鲁司特 小分子药物 抑制白三烯受体 轻中度AD患者 Ⅱ期 2018-01-18 NCT03402503
来那度胺 小分子药物 抗炎、免疫调节 遗忘型MCI患者 Ⅱ期 2019-07-25 NCT04032626
Daratumumab 单克隆抗体 CD38 轻中度AD患者 Ⅱ期 2019-08-28 NCT04070378
Pepinemab 单克隆抗体 轴突导向因子4D 轻度AD患者 Ⅱ期 2020-05-08 NCT04381468
AL002 单克隆抗体 TREM2受体 早期AD患者 Ⅱ期 2020-10-19 NCT04592874
NE3107 小分子药物 MAPK-1/3抑制剂 轻中度AD患者 Ⅲ期 2020-12-16 NCT04669028
Baricitinib 小分子药物 Janus激酶抑制剂 主观认知功能下降、MCI、AD患者 Ⅱ期 2022-01-12 NCT05189106
Canakinumab 单克隆抗体 IL-1β MCI、轻度AD患者 Ⅱ期 2021-03-12 NCT04795466
Senicapoc 小分子药物 Gardos通道阻滞剂a 前驱期或轻度AD患者 Ⅱ期 2021-03-18 NCT04804241
沙格司亭 造血生长因子 粒细胞-巨噬细胞集落刺激因子 轻中度AD患者 Ⅱ期 2021-05-26 NCT04902703
卡介苗 疫苗 免疫调节因子 轻中度AD患者 Ⅱ期 2021-08-13 NCT05004688
TB006 单克隆抗体 半乳凝素3 轻至重度AD患者 Ⅱ期 2021-10-12 NCT05074498
Tdap疫苗 疫苗 免疫调节因子 AD患者 Ⅱ期 2022-01-10 NCT05183516
Daratumumab:达妥木单抗;Pepinemab:派比奈单抗;Baricitinib:巴瑞克替尼;Canakinumab:卡那单抗;Senicapoc:塞尼卡泊。AD:阿尔茨海默病;MCI:轻度认知障碍;TREM2:髓样细胞触发受体2;MAPK-1/3:丝裂原活化蛋白激酶1/3;IL-1β:白介素-1β。a KCa3.1(Ca2+激活的K+通道)。
1.4 脑代谢靶点

AD患者体内可能发生葡萄糖代谢障碍,这一病理改变可以早于认知能力下降约14年[38]。由于显著的脑内胰岛素抵抗,AD也被称为3型糖尿病[39]。二甲双胍可以减少肝葡萄糖的输出并改善胰岛素抵抗,一直是糖尿病治疗的一线用药。研究[40]显示,长期服用二甲双胍可以降低AD患病风险,接受二甲双胍干预后,MCI患者乃至轻度AD患者能取得一定临床获益[41-42]。一项针对遗忘型MCI患者使用二甲双胍进行预防性治疗的Ⅲ期临床试验正在招募受试者(NCT04098666)。胰高糖素样肽-1(glucagon-like peptide-1, GLP-1)是一种肠促胰素,通过刺激胰岛素分泌以降低血糖;同时,GLP-1激活己糖激酶、改变葡萄糖清除率来调节脑内葡萄糖代谢[43]。GLP-1类似物司马鲁肽(NCT04777396)以及GLP-1受体激动剂利拉鲁肽[44]治疗AD疗效评估的临床试验正在进行。苯磷硫胺是脂溶性维生素B1衍生物,能改善MCI患者及AD患者的认知水平[45-46],Ⅱ期研究提示苯磷硫胺有助于延缓中度AD患者的认识下降趋势[26],可能是通过提高红细胞内焦磷酸硫胺素水平以及改善糖代谢水平实现的[47]。CYP46A1可以改善脑胆固醇代谢,有望改善痴呆患者的认知功能[26]

1.5 其他

神经元是一类永久性细胞,成人脑内神经再生一直存在争议[48-49],神经退行性疾病的干细胞输注治疗应运而生。AstroStem是一种培养自体脂肪组织来源的间充质干细胞,通过归巢效应抵达中枢神经系统,再分化并修复神经系统功能。尽管AD患者对静脉使用AstroStem耐受性较好,接受AstroStem治疗后受试者认知水平也有一定改善趋势,但两组间的差异并无统计学意义(NCT03117738)。目前开展的Ⅱb期临床试验尚未开始招募受试者(NCT04482413)。有研究使用异体来源的骨髓间充质干细胞治疗轻中度AD患者,目前已有研究进行到Ⅰ期(NCT04040348)和Ⅱ期(NCT02833792)临床试验。外泌体作为一种细胞外囊泡,具有良好的生物相容性,能透过血脑屏障,具备很好的神经系统药物成药性。动物实验提示异体脂肪间充质干细胞来源的外泌体有良好的抗AD样病理作用[50]。目前,采用异体脂肪间充质干细胞来源的外泌体治疗AD的临床研究结果尚未披露(NCT04388982)。

2 非药物干预 2.1 饮食调节

食物提供了人体所需的氨基酸、维生素、微量元素等各类营养物质,与疾病关系密切。例如,维生素B12缺乏可导致巨幼细胞性贫血,维生素B1缺乏可引起“脚气病”、韦尼克脑病,越来越多研究证实AD患者存在硫胺素缺乏和代谢异常[51-52]。维生素B1/硫胺素缺乏在老年人群中常见,其水平与受试者的认知水平有一定关联[53]。硫胺素缺乏会导致脑代谢下降、Aβ和Tau蛋白沉积[54-55]、血脑屏障通透性增加[56]等AD样病理改变。地中海饮食(Mediterranean dietary pattern, MED)以丰富的植物性食物和橄榄油为主的油脂摄入为特点,与痴呆患病风险之间存在明显的负相关,尤其在低教育水平人群中[57]。坚持MED能延缓老年人群简易精神状态检查(Mini-Mental State Examination, MMSE)得分下降的趋势[58],提示MED能保护认知功能,可能与改善脑内Aβ病变及Tau病变,延缓老年人群内侧颞叶萎缩有关[59]。此外,高血压干预膳食模式(dietary approaches to stop hypertension, DASH)和地中海-DASH干预神经退行性病变的饮食(Mediterranean-DASH intervention for neurodegenerative delay, MIND)均有一定的保护认知作用[60-62]。生酮饮食在限制碳水化合物摄入的基础上增加脂肪的摄入,促使机体从依赖葡萄糖代谢的状态转换为依赖脂肪酸代谢的状态。一项随机、双盲的临床试验探讨了改良地中海-生酮饮食对MCI患者的作用,结果显示其能够调节MCI患者的肠道细菌菌群及真菌菌群特征,改善脑脊液中Aβ病变[63-64]、Tau蛋白病变及脑灌注[65]。轻中度AD患者接受中链脂肪酸补充剂干预后,脑内糖代谢障碍得到明显改善[66]。生酮饮食能改善认知障碍患者的AD样脑病理改变,但近期研究[67]显示,尽管患者整体健康水平得到一定提升,改良生酮饮食无法延缓患者的认知水平下降。

2.2 有氧运动

AD患者早期便出现神经血管单元(neurovascular unit, NVU)功能受损,局部脑灌注不良会进一步加剧AD样脑病理改变,加速认知水平减退[68-69]。有氧运动不仅能改善老年人的心肺功能,还能改善其脑灌注[70-71]。老年人群增加每日运动总量能显著降低认知能力下降的风险[72]。老年女性进行长期规律的体育活动后认知水平下降趋势变缓,其认知水平明显高于不从事体育运动的同龄女性[73]。但有氧运动对于老年人群的认知保护效应,并不能从AD人群中得到体现。芬兰阿尔茨海默病运动试验(Finnish Alzheimer disease exercise trial, FINALEX)结果表明,相较于对照组,无论居家锻炼还是群体锻炼均无法延缓AD患者的认知下降趋势[74]。相似地,12个月的中高强度的有氧力量训练并不能改善AD患者的认知下降[75],尽管如此,有氧运动可以改善受试者的总体健康状况[74-75]

2.3 无创脑刺激技术

目前开展的临床研究多使用经颅磁刺激(transcranial magnetic stimulation, TMS)、经颅直流电刺激(transcranial direct current stimulation, tDCS)技术和γ-频率感官刺激。重复经颅磁刺激(repeated TMS, rTMS)是经颅磁刺激技术中的一种,通过调节默认模式网络改善遗忘型MCI患者的神经心理测评量表得分[76]。rTMS能够改善MCI患者的认知功能,并缓解患者的冷漠[77],可能通过影响皮质可塑性实现[78]。近期披露的一项Ⅱ期临床试验结果显示,AD患者在接受24周的楔前叶rTMS处理后,认知水平较对照组下降较缓[79]。此外,有研究发现rTMS联合认知训练能改善AD患者的认知水平[80],且患者左侧大脑前额叶的乙酰天冬氨酸/肌酐比值上升,提示皮质代谢状态改变[81]。另一方面,认知障碍患者在接受γ频率的tDCS干预后,患者的Rey听觉词语学习测验总得分及长延迟回忆得分显著提高[82]。针对背外侧前额叶皮质进行6个月不间断的tDCS能显著改善早期AD患者的大脑葡萄糖代谢率,同时能改善或稳定患者的认知水平[83]。此外,tDCS干预后,AD患者的血清Aβ42水平出现了上升,Aβ42改变与认知水平上升呈明显相关性[83]。Tsai教授课题组报道了一种特殊的感官刺激方法,初步的临床试验结果显示,40 Hz感官刺激能显著改善轻度AD患者的认知功能,延缓海马萎缩及脑室扩张,纠正昼夜节律[84]。该模式的感官刺激可以减少AD小鼠模型中Aβ沉积、Tau蛋白异常磷酸化,并改善小鼠认知功能[85],但该临床试验并未通过分子显像观察受试者脑内Aβ沉积改变及Tau蛋白磷酸化水平变化。

3 总结与展望

AD是一个与增龄相关的、具有多病理生理特征的复杂疾病,以进行性神经元丢失和脑萎缩为特征的神经变性,以脑内老年斑沉积和神经元内Tau蛋白过度磷酸化和聚集形成NFTs、脑葡萄糖代谢下降、胶质细胞激活和神经炎症为突出病理生理改变。由于AD确切发病机制未被阐明,针对上述单一靶点的治疗也很难有效改善AD患者认知衰退。因此,深入研究AD神经变性的真正致病因素,阐明导致疾病发生发展的病理生理特征之间的内在关系,才能找到有效治疗AD的新方法。

利益冲突:所有作者声明不存在利益冲突。

参考文献
[1]
SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284): 1577-1590. [DOI]
[2]
JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. [DOI]
[3]
WANG J T, XU G, REN R J, et al. The impacts of health insurance and resource on the burden of Alzheimer's disease and related dementias in the world population[J]. Alzheimers Dement, 2023, 19(3): 967-979. [DOI]
[4]
DUBOIS B, FELDMAN H H, JACOVA C, et al. Advancing research diagnostic criteria for Alzheimer's disease: the IWG-2 criteria[J]. Lancet Neurol, 2014, 13(6): 614-629. [DOI]
[5]
JACK C R JR, BENNETT D A, BLENNOW K, et al. NIA-AA Research Framework: toward a biological definition of Alzheimer's disease[J]. Alzheimers Dement, 2018, 14(4): 535-562. [DOI]
[6]
Alzheimer's Association. 2022 Alzheimer's disease facts and figures[J]. Alzheimers Dement, 2022, 18(4): 700-789. [DOI]
[7]
REN R J, QI J L, LIN S H, et al. The China Alzheimer report 2022[J]. Gen Psychiatr, 2022, 35(1): e100751. [DOI]
[8]
FORTEA J, ZAMAN S H, HARTLEY S, et al. Alzheimer's disease associated with Down syndrome: a genetic form of dementia[J]. Lancet Neurol, 2021, 20(11): 930-942. [DOI]
[9]
VAN DER FLIER W M, SCHELTENS P. The ATN framework-moving preclinical Alzheimer disease to clinical relevance[J]. JAMA Neurol, 2022, 79(10): 968-970. [DOI]
[10]
FILLIT H, GREEN A. Aducanumab and the FDA - where are we now?[J]. Nat Rev Neurol, 2021, 17(3): 129-130.
[11]
KARLAWISH J, GRILL J D. The approval of Aduhelm risks eroding public trust in Alzheimer research and the FDA[J]. Nat Rev Neurol, 2021, 17(9): 523-524. [DOI]
[12]
CHEN Z C, ZHONG C J. Decoding Alzheimer's disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies[J]. Prog Neurobiol, 2013, 108: 21-43. [DOI]
[13]
SALLOWAY S, SPERLING R, FOX N C, et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer's disease[J]. N Engl J Med, 2014, 370(4): 322-333. [DOI]
[14]
EGAN M F, KOST J, VOSS T, et al. Randomized trial of verubecestat for prodromal Alzheimer's disease[J]. N Engl J Med, 2019, 380(15): 1408-1420. [DOI]
[15]
DOODY R S, THOMAS R G, FARLOW M, et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer's disease[J]. N Engl J Med, 2014, 370(4): 311-321. [DOI]
[16]
SALLOWAY S, HONIGBERG L A, CHO W, et al. Amyloid positron emission tomography and cerebrospinal fluid results from a crenezumab anti-amyloid-beta antibody double-blind, placebo-controlled, randomized phaseⅡstudy in mild-to-moderate Alzheimer's disease (BLAZE)[J]. Alzheimers Res Ther, 2018, 10(1): 96. [DOI]
[17]
CUMMINGS J L, COHEN S, VAN DYCK C H, et al. ABBY: a phase 2 randomized trial of crenezumab in mild to moderate Alzheimer disease[J]. Neurology, 2018, 90(21): e1889-e1897. [DOI]
[18]
SALLOWAY S, FARLOW M, MCDADE E, et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer's disease[J]. Nat Med, 2021, 27(7): 1187-1196. [DOI]
[19]
OSTROWITZKI S, LASSER R A, DORFLINGER E, et al. A phase Ⅲ randomized trial of gantenerumab in prodromal Alzheimer's disease[J]. Alzheimers Res Ther, 2017, 9(1): 95. [DOI]
[20]
BUDD HAEBERLEIN S, AISEN P S, BARKHOF F, et al. Two randomized phase 3 studies of aducanumab in early Alzheimer's disease[J]. J Prev Alzheimers Dis, 2022, 9(2): 197-210.
[21]
SCHULMAN K A, GREICIUS M D, RICHMAN B. Will CMS find aducanumab reasonable and necessary for Alzheimer disease after FDA approval?[J]. JAMA, 2021, 326(5): 383-384. [DOI]
[22]
Roche provides update on phase Ⅲ GRADUATE programme evaluating gantenerumab in early Alzheimer's disease[EB/OL]. (2022/12/15)[2022-12-16]. https://www.drugs.com/clinical_trials/roche-provides-update-phase-iii-graduate-programme-evaluating-gantenerumab-early-alzheimer-s-20536.html.
[23]
VAN DYCK C H, SWANSON C J, AISEN P, et al. Lecanemab in early Alzheimer's disease[J]. N Engl J Med, 2023, 388(1): 9-21. [DOI]
[24]
ROYTMAN M, MASHRIQI F, AL-TAWIL K, et al. Amyloid-related imaging abnormalities: an update[J]. AJR Am J Roentgenol, 2023, 1-13.
[25]
BISHOP G M, ROBINSON S R. Physiological roles of amyloid-β and implications for its removal in Alzheimer's disease[J]. Drugs Aging, 2004, 21(10): 621-630. [DOI]
[26]
Abstract: 15th conference clinical trials Alzheimer's disease, November 29- December 2, 2022, San francisco, USA: posters[J]. J Prev Alzheimers Dis, 2022, 9(S1): S51-S248.
[27]
WESSELING H, MAIR W, KUMAR M, et al. Tau PTM profiles identify patient heterogeneity and stages of Alzheimer's disease[J]. Cell, 2020, 183(6): 1699-1713. [DOI]
[28]
GAUTHIER S, FELDMAN H H, SCHNEIDER L S, et al. Efficacy and safety of tau-aggregation inhibitor therapy in patients with mild or moderate Alzheimer's disease: a randomised, controlled, double-blind, parallel-arm, phase 3 trial[J]. Lancet, 2016, 388(10062): 2873-2884. [DOI]
[29]
WILCOCK G K, GAUTHIER S, FRISONI G B, et al. Potential of low dose leuco-methylthioninium bis(hydromethanesulphonate) (LMTM) monotherapy for treatment of mild alzheimer's disease: cohort analysis as modified primary outcome in a phase Ⅲ clinical trial[J]. J Alzheimers Dis, 2018, 61(1): 435-457.
[30]
ABYADEH M, GUPTA V, GUPTA V, et al. Comparative analysis of aducanumab, zagotenemab and pioglitazone as targeted treatment strategies for Alzheimer's disease[J]. Aging Dis, 2021, 12(8): 1964-1976. [DOI]
[31]
NOVAK P, KOVACECH B, KATINA S, et al. ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy against pathological tau in Alzheimer's disease[J]. Nat Aging, 2021, 1(6): 521-534. [DOI]
[32]
LENG F D, EDISON P. Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here?[J]. Nat Rev Neurol, 2021, 17(3): 157-172. [DOI]
[33]
BLACHER E, DADALI T, BESPALKO A, et al. Alzheimer's disease pathology is attenuated in a CD38-deficient mouse model[J]. Ann Neurol, 2015, 78(1): 88-103. [DOI]
[34]
DECOURT B, WILSON J, RITTER A, et al. MCLENA-1: a phase Ⅱ clinical trial for the assessment of safety, tolerability, and efficacy of lenalidomide in patients with mild cognitive impairment due to Alzheimer's disease[J]. Open Access J Clin Trials, 2020, 12: 1-13. [DOI]
[35]
XIAO S F, CHAN P, WANG T, et al. A 36-week multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial of sodium oligomannate for mild-to-moderate Alzheimer's dementia[J]. Alzheimers Res Ther, 2021, 13(1): 62. [DOI]
[36]
READING C L, AHLEM C N, MURPHY M F. NM101 Phase Ⅲ study of NE3107 in Alzheimer's disease: rationale, design and therapeutic modulation of neuroinflammation and insulin resistance[J]. Neurodegener Dis Manag, 2021, 11(4): 289-298. [DOI]
[37]
DUBOIS B, LÓPEZ-ARRIETA J, LIPSCHITZ S, et al. Masitinib for mild-to-moderate Alzheimer's disease: results from a randomized, placebo-controlled, phase 3, clinical trial[J]. Alzheimers Res Ther, 2023, 15(1): 39. [DOI]
[38]
GORDON B A, BLAZEY T M, SU Y, et al. Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study[J]. Lancet Neurol, 2018, 17(3): 241-250. [DOI]
[39]
KELLAR D, CRAFT S. Brain insulin resistance in Alzheimer's disease and related disorders: mechanisms and therapeutic approaches[J]. Lancet Neurol, 2020, 19(9): 758-766. [DOI]
[40]
SLUGGETT J K, KOPONEN M, BELL J S, et al. Metformin and risk of Alzheimer's disease among community-dwelling people with diabetes: a national case-control study[J]. J Clin Endocrinol Metab, 2020, 105(4): dgz234.
[41]
KOENIG A M, MECHANIC-HAMILTON D, XIE S X, et al. Effects of the insulin sensitizer metformin in Alzheimer disease: pilot data from a randomized placebo-controlled crossover study[J]. Alzheimer Dis Assoc Disord, 2017, 31(2): 107-113. [DOI]
[42]
LUCHSINGER J A, PEREZ T, CHANG H, et al. Metformin in amnestic mild cognitive impairment: results of a pilot randomized placebo controlled clinical trial[J]. J Alzheimers Dis, 2016, 51(2): 501-514. [DOI]
[43]
GEJL M, EGEFJORD L, LERCHE S, et al. Glucagon-like peptide-1 decreases intracerebral glucose content by activating hexokinase and changing glucose clearance during hyperglycemia[J]. J Cereb Blood Flow Metab, 2012, 32(12): 2146-2152. [DOI]
[44]
FEMMINELLA G D, FRANGOU E, LOVE S B, et al. Evaluating the effects of the novel GLP-1 analogue liraglutide in Alzheimer's disease: study protocol for a randomised controlled trial (ELAD study)[J]. Trials, 2019, 20(1): 191. [DOI]
[45]
GIBSON G E, LUCHSINGER J A, CIRIO R, et al. Benfotiamine and cognitive decline in Alzheimer's disease: results of a randomized placebo-controlled phaseⅡa clinical trial[J]. J Alzheimers Dis, 2020, 78(3): 989-1010. [DOI]
[46]
PAN X L, CHEN Z C, FEI G Q, et al. Long-term cognitive improvement after benfotiamine administration in patients with Alzheimer's disease[J]. Neurosci Bull, 2016, 32(6): 591-596. [DOI]
[47]
BHAWAL R, FU Q, ANDERSON E T, et al. Serum metabolomic and lipidomic profiling reveals novel biomarkers of efficacy for benfotiamine in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(24): 13188. [DOI]
[48]
SORRELLS S F, PAREDES M F, CEBRIAN-SILLA A, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults[J]. Nature, 2018, 555(7696): 377-381. [DOI]
[49]
ANACKER C, LUNA V M, STEVENS G S, et al. Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus[J]. Nature, 2018, 559(7712): 98-102. [DOI]
[50]
MA X Y, HUANG M, ZHENG M N, et al. ADSCs-derived extracellular vesicles alleviate neuronal damage, promote neurogenesis and rescue memory loss in mice with Alzheimer's disease[J]. J Control Release, 2020, 327: 688-702. [DOI]
[51]
LU'O'NG K V Q, NGUYEN L T H. Role of thiamine in Alzheimer's disease[J]. Am J Alzheimers Dis Other Demen, 2011, 26(8): 588-598. [DOI]
[52]
GIBSON G E, HIRSCH J A, CIRIO R T, et al. Abnormal thiamine-dependent processes in Alzheimer's Disease. Lessons from diabetes[J]. Mol Cell Neurosci, 2013, 55: 17-25. [DOI]
[53]
HÅGLIN L, DOMELLÖF M, BÄCKMAN L, et al. Low plasma thiamine and phosphate in male patients with Parkinson's disease is associated with mild cognitive impairment[J]. Clin Nutr ESPEN, 2020, 37: 93-99. [DOI]
[54]
GONG Y S, HU K, YANG L Q, et al. Comparative effects of EtOH consumption and thiamine deficiency on cognitive impairment, oxidative damage, and β-amyloid peptide overproduction in the brain[J]. Free Radic Biol Med, 2017, 108: 163-173. [DOI]
[55]
ZHANG Q P, YANG G, LI W X, et al. Thiamine deficiency increases β-secretase activity and accumulation of β-amyloid peptides[J]. Neurobiol Aging, 2011, 32(1): 42-53. [DOI]
[56]
MANZ H J, ROBERTSON D M. Vascular permeability to horseradish peroxidase in brainstem lesions of thiamine-deficient rats[J]. Am J Pathol, 1972, 66(3): 565-576.
[57]
ANDREU-REINÓN M E, CHIRLAQUE M D, GAVRILA D, et al. Mediterranean diet and risk of dementia and Alzheimer's disease in the EPIC-Spain dementia cohort study[J]. Nutrients, 2021, 13(2): 700. [DOI]
[58]
FÉART C, SAMIERI C, RONDEAU V, et al. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia[J]. JAMA, 2009, 302(6): 638-648. [DOI]
[59]
BALLARINI T, MELO VAN LENT D, BRUNNER J, et al. Mediterranean diet, Alzheimer disease biomarkers and brain atrophy in old age[J]. Neurology, 2021, 96(24): e2920-e2932. [DOI]
[60]
VAN DEN BRINK A C, BROUWER-BROLSMA E M, BERENDSEN A A M, et al. The Mediterranean, dietary approaches to stop hypertension (DASH), and Mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer's disease-a review[J]. Adv Nutr, 2019, 10(6): 1040-1065. [DOI]
[61]
MORRIS M C, TANGNEY C C, WANG Y M, et al. MIND diet associated with reduced incidence of Alzheimer's disease[J]. Alzheimers Dement, 2015, 11(9): 1007-1014. [DOI]
[62]
MORRIS M C, TANGNEY C C, WANG Y M, et al. MIND diet slows cognitive decline with aging[J]. Alzheimers Dement, 2015, 11(9): 1015-1022. [DOI]
[63]
NAGPAL R, NETH B J, WANG S H, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment[J]. EBioMedicine, 2019, 47: 529-542. [DOI]
[64]
NAGPAL R, NETH B J, WANG S H, et al. Gut mycobiome and its interaction with diet, gut bacteria and Alzheimer's disease markers in subjects with mild cognitive impairment: a pilot study[J]. EBioMedicine, 2020, 59: 102950. [DOI]
[65]
NETH B J, MINTZ A, WHITLOW C, et al. Modified ketogenic diet is associated with improved cerebrospinal fluid biomarker profile, cerebral perfusion, and cerebral ketone body uptake in older adults at risk for Alzheimer's disease: a pilot study[J]. Neurobiol Aging, 2020, 86: 54-63. [DOI]
[66]
CROTEAU E, CASTELLANO C A, RICHARD M A, et al. Ketogenic medium chain triglycerides increase brain energy metabolism in Alzheimer's disease[J]. J Alzheimers Dis, 2018, 64(2): 551-561. [DOI]
[67]
PHILLIPS M C L, DEPREZ L M, MORTIMER G M N, et al. Randomized crossover trial of a modified ketogenic diet in Alzheimer's disease[J]. Alzheimers Res Ther, 2021, 13(1): 51. [DOI]
[68]
KORTE N, NORTLEY R, ATTWELL D. Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease[J]. Acta Neuropathol, 2020, 140(6): 793-810. [DOI]
[69]
KISLER K, NELSON A R, MONTAGNE A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18(7): 419-434. [DOI]
[70]
BRAZ I D, FLÜCK D, LIP G Y H, et al. Impact of aerobic fitness on cerebral blood flow and cerebral vascular responsiveness to CO2 in young and older men[J]. Scand J Med Sci Sports, 2017, 27(6): 634-642. [DOI]
[71]
WHEELER M J, DUNSTAN D W, SMITH B, et al. Morning exercise mitigates the impact of prolonged sitting on cerebral blood flow in older adults[J]. J Appl Physiol (1985), 2019, 126(4): 1049-1055. [DOI]
[72]
BUCHMAN A S, BOYLE P A, YU L, et al. Total daily physical activity and the risk of AD and cognitive decline in older adults[J]. Neurology, 2012, 78(17): 1323-1329. [DOI]
[73]
WEUVE J, KANG J H, MANSON J E, et al. Physical activity, including walking, and cognitive function in older women[J]. JAMA, 2004, 292(12): 1454-1461. [DOI]
[74]
PITKÄLÄ K H, PÖYSTI M M, LAAKKONEN M L, et al. Effects of the Finnish Alzheimer disease exercise trial (FINALEX): a randomized controlled trial[J]. JAMA Intern Med, 2013, 173(10): 894-901. [DOI]
[75]
LAMB S E, SHEEHAN B, ATHERTON N, et al. Dementia And Physical Activity (DAPA) trial of moderate to high intensity exercise training for people with dementia: randomised controlled trial[J]. BMJ, 2018, 361: k1675.
[76]
CUI H L, REN R J, LIN G Z, et al. Repetitive transcranial magnetic stimulation induced hypoconnectivity within the default mode network yields cognitive improvements in amnestic mild cognitive impairment: a randomized controlled study[J]. J Alzheimers Dis, 2019, 69(4): 1137-1151. [DOI]
[77]
PADALA P R, PADALA K P, LENSING S Y, et al. Repetitive transcranial magnetic stimulation for apathy in mild cognitive impairment: a double-blind, randomized, sham-controlled, cross-over pilot study[J]. Psychiatry Res, 2018, 261: 312-318. [DOI]
[78]
LI X X, QI G Q, YU C, et al. Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment[J]. Brain Stimul, 2021, 14(3): 503-510. [DOI]
[79]
KOCH G, CASULA E P, BONNÌ S, et al. Precuneus magnetic stimulation for Alzheimer's disease: a randomized, sham-controlled trial[J]. Brain, 2022, 145(11): 3776-3786. [DOI]
[80]
SABBAGH M, SADOWSKY C, TOUSI B, et al. Effects of a combined transcranial magnetic stimulation (TMS) and cognitive training intervention in patients with Alzheimer's disease[J]. Alzheimers Dement, 2020, 16(4): 641-650. [DOI]
[81]
ZHANG F X, QIN Y Y, XIE L F, et al. High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer's disease[J]. J Neural Transm (Vienna), 2019, 126(8): 1081-1094. [DOI]
[82]
BENUSSI A, CANTONI V, COTELLI M S, et al. Exposure to gamma tACS in Alzheimer's disease: a randomized, double-blind, sham-controlled, crossover, pilot study[J]. Brain Stimul, 2021, 14(3): 531-540. [DOI]
[83]
IM J J, JEONG H, BIKSON M, et al. Effects of 6-month at-home transcranial direct current stimulation on cognition and cerebral glucose metabolism in Alzheimer's disease[J]. Brain Stimul, 2019, 12(5): 1222-1228. [DOI]
[84]
CHAN D, SUK H J, JACKSON B L, et al. Gamma frequency sensory stimulation in mild probable Alzheimer's dementia patients: results of feasibility and pilot studies[J]. PLoS One, 2022, 17(12): e0278412. [DOI]
[85]
MARTORELL A J, PAULSON A L, SUK H J, et al. Multi-sensory gamma stimulation ameliorates Alzheimer's-associated pathology and improves cognition[J]. Cell, 2019, 177(2): 256-271.e22. [DOI]

文章信息

引用本文
黄强, 桑绍明, 潘晓黎, 钟春玖. 阿尔茨海默病临床治疗研究进展[J]. 中国临床医学, 2023, 30(2): 199-208.
HUANG Qiang, SANG Shao-ming, PAN Xiao-li, ZHONG Chun-jiu. Advance on the clinical research of Alzheimer's treatment[J]. Chinese Journal of Clinical Medicine, 2023, 30(2): 199-208.
通信作者(Corresponding authors).
钟春玖, Tel:021-64041990,E-mail:zhongcj@163.com.
基金项目
国家自然科学基金面上项目(82171408, 82171411),上海市市级科技重大专项(S2021-071)
Foundation item
Supported by the General Program of National Natural Science Foundation of China (82171408, 82171411) and Shanghai Municipal Science and Technology Major Project (S2021-071)

工作空间