2. 复旦大学附属中山医院药剂科,上海 200032;
3. 复旦大学附属中山医院心内科,上海 200032
2. Department of Pharmacy, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
3. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
血小板活化在冠状动脉粥样硬化发展与冠脉血栓形成中发挥关键作用[1]。双联抗血小板治疗(dual anti-platelet therapy, DAPT)可以显著减少急性冠脉综合征(acute coronary syndrome,ACS)患者经皮血运重建之后的缺血事件[2]。目前相关指南[3]建议,对于植入药物洗脱支架(drug-eluting stents, DES)的患者,至少维持双抗治疗6~12个月。但是,目前最佳持续时间仍存在争议,而且即使长期维持DAPT,缺血事件仍可能复发[4]。
血脂异常尤其是低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)升高可能是冠脉内斑块发展的主要因素[5]。随着年龄增长,脂质相关物质沉积在冠脉内,造成冠脉狭窄,导致稳定型心绞痛[6]。而血小板活化导致的斑块破裂则可诱发ACS[7]。既往体外研究[8]发现,血小板功能与血脂存在一定相关性。也有研究[9]发现,高水平的LDL-C可提高无冠心病患者的血小板活化水平。然而,目前缺乏关于DES植入后使用DAPT的患者残余血小板活性与血脂指标相关性的真实世界研究。因此,本研究对此进行分析,以期为临床改进DAPT应用方案,以及预防再发缺血性心血管事件提供参考。
1 资料与方法 1.1 一般资料前瞻性纳入2017年2月至12月在复旦大学附属中山医院心内科接受DES植入术的335例非ST段抬高型ACS(non-ST elevation acute coronary syndrome, NSTE-ACS)住院患者。所有患者在入院时即接受负荷剂量阿司匹林300 mg/d+氯吡格雷300 mg/d;DES植入术后接受阿司匹林100 mg/d+氯吡格雷75 mg/d,至少维持1年。纳入标准:(1)年龄18~80岁;(2)入院前3个月未使用他汀药物及DAPT;(3)有血栓弹力图(thromboelastography, TEG)结果。排除标准:(1)未植入DES;(2)血流动力学不稳定;(3)近期活动性出血;(4)同时口服抗凝药物,使用前蛋白转化酶枯草杆菌蛋白酶Kexin-9(proprotein convertase subtilisin/kexin type 9,PCSK9)抑制剂治疗;(5)严重的肝、肾功能不全,严重的感染、肿瘤;(6)相关临床数据不完整。剔除未通过门诊、电话等方式随访患者,所有入组患者进行为期1年的随访。本研究遵守赫尔辛基宣言,获得复旦大学附属中山医院伦理委员会批准(B2022-078R)。所有研究对象签署知情同意书。
1.2 TEG检查及分组术后第3天清晨抽取患者肘静脉血,弃前2~3 mL后,将足量血转移至含有3.8%枸橼酸钠的独立真空采血管,通过TEG(5000型操作系统,Haemoscope公司,美国)检测二磷酸腺苷诱导的血小板-纤维蛋白凝块强度(adenosine diphosphate-induced platelet-fibrin clot strength, MAADP)。将MAADP>47 mm[10]的患者作为残余血小板高反应(high-residual platelet reactivity, HRPR)组,其余患者作为non-HRPR组。
1.3 观察指标通过电子病历系统收集患者的资料。人口学信息包括年龄、性别、体质量指数(body mass index,BMI)、吸烟史;合并症包括高血压、糖尿病、血脂异常;实验室指标于入院次日清晨收集,包括估算的肾小球滤过率(estimated glomerular filtration rate, eGFR)、血红蛋白(hemoglobin, Hb)、血小板计数(platelet count, PLT)、平均血小板体积(mean platelet volume, MPV)、血小板分布宽度(platelet distribution width, PDW)、活化部分凝血活酶时间(activated partial thromboplastin time, APTT)、凝血酶原时间(prothrombin time, PT)、凝血酶时间(thrombin time, TT)、D-二聚体、国际标准化比值(international normalized ratio, INR)、氨基末端脑钠肽前体(N-terminal pro-brain natriuretic peptide, NT-proBNP)、总胆固醇(total cholesterol, TC)、低密度脂蛋白胆固醇(low-density lipoprotein cholesterol, LDL-C)、高密度脂蛋白胆固醇(high-density lipoprotein cholesterol, HDL-C);伴随用药如降压药、质子泵抑制剂。
1.4 随访与临床结局患者出院后,每个月通过电话、门诊等方式对患者进行为期12个月的随访。主要临床终点为出院1年内发生缺血性主要不良心血管事件(major adverse cardiac event, MACE),包括心源性死亡、非致死性心肌梗死或缺血性脑卒中。根据动脉粥样硬化心血管疾病患者的LDL-C的目标值应小于2.6 mmol/L[11],进一步将患者分为HRPR+高脂组(LDL-C≥2.6 mmol/L)、HRPR+低脂组(LDL-C<2.6 mmol/L)、non-HRPR+高脂组、non-HRPR+低脂组,比较各亚组间患者MACE发生情况。
1.5 统计学处理采用SPSS 26.0软件对数据进行统计学分析。计量资料符合正态分布时,以x±s表示,采用t检验;非正态分布的计量资料以M(P25, P75)表示,采用Mann-Whitney U检验。计数资料以n(%)表示,采用χ2检验或Fisher确切概率法。
采用Pearson相关系数分析血小板参数与血脂指标间的相关性。采用logistic单因素回归及多因素逐步回归模型分析HRPR的影响因素,计算优势比(odds ratio, OR)及95%CI。采用Kaplan-Meier(K-M)生存曲线评估患者不同残余血小板反应性与不同血脂水平对其临床结局的影响,采用log-rank检验计算风险比(hazard ratio, HR)及95%CI。所有检验均为双侧,检验水准(α)为0.05。
2 结果 2.1 临床基线特征335例患者中,71例(21.2%)表现为HRPR。所有受试者的中位MAADP为37.9(25.3, 45.6) mm,其中HRPR组为55.8(50.0, 60.0) mm、non-HRPR组为34.1(41.2, 22.9) mm。结果(表 1)显示:与non-HRPR组相比,HRPR组患者年龄、MPV、TC、LDL-C均显著升高(P<0.05)。
指标 | 总计(n=335) | HRPR组(n=71) | non-HRPR组(n=264) | t/χ2值 | P值 |
基线资料 | |||||
年龄/岁 | 63.24±10.68 | 66.06±11.31 | 62.48±10.40 | 2.527 | 0.012 |
男性n(%) | 269(80.3) | 52(73.2) | 217(82.2) | 2.838 | 0.092 |
BMI/(kg·m-2) | 24.91±1.47 | 24.88±1.42 | 24.92±1.48 | 0.594 | 0.876 |
吸烟n(%) | 183(54.6) | 38(53.5) | 145(54.9) | 0.044 | 0.833 |
合并症n(%) | |||||
高血压 | 211(63.0) | 44(62.0) | 167(63.3) | 0.040 | 0.842 |
糖尿病 | 112(30.4) | 23(32.4) | 79(29.9) | 0.161 | 0.688 |
血脂异常 | 68(20.3) | 20(28.2) | 48(18.2) | 3.450 | 0.063 |
实验室指标 | |||||
eGFR/[(mL·min-1·(1.73 m)-2] | 69.40±24.01 | 79.72±24.53 | 79.31±23.91 | 0.128 | 0.898 |
Hb/(g·L-1) | 130.44±22.61 | 132.63±22.43 | 129.84±22.66 | 0.923 | 0.357 |
PLT/(×109·L-1) | 188 (160, 224) | 190 (166, 247) | 187 (158.25, 210.75) | 1.722 | 0.088 |
MPV/fL | 11.12±1.00 | 11.33±1.02 | 11.06±0.98 | 2.079 | 0.038 |
PDW/% | 13.54±2.27 | 14.00±2.46 | 13.42±2.21 | 1.920 | 0.056 |
APTT/s | 28.71±3.69 | 29.51±3.91 | 28.90±3.61 | 0.959 | 0.363 |
PT/s | 11.80 (11.30, 12.40) | 12.00 (11.20, 12.80) | 11.80 (11.30, 12.30) | 1.550 | 0.124 |
TT/s | 16.74±1.28 | 16.75±1.19 | 16.74±1.30 | 0.064 | 0.949 |
D-二聚体/(mg·L-1) | 0.30 (0.19, 0.63) | 0.46 (0.19, 0.90) | 0.28 (0.19, 0.53) | 1.555 | 0.123 |
INR | 1.07±0.13 | 1.09±0.14 | 1.07±0.13 | 0.241 | 0.248 |
NT-proBNP/(pmol·L-1) | 392.8 (128.6, 1 312.0) | 352.9 (128.6, 1 898.0) | 395 (129.0, 1 091.0) | 1.200 | 0.234 |
TC/(mmol·L-1) | 4.03±1.01 | 4.44±0.85 | 3.92±1.03 | 3.896 | <0.001 |
LDL-C/(mmol·L-1) | 2.28±0.89 | 2.76±0.78 | 2.16±0.87 | 5.233 | <0.001 |
HDL-C/(mmol·L-1) | 1.03±0.29 | 1.02±0.21 | 1.03±0.30 | 0.228 | 0.820 |
MAADP/mm | 37.9 (25.3, 45.6) | 55.8 (50.0, 60.0) | 34.1 (41.2, 22.9) | 21.006 | <0.001 |
合并用药n(%) | |||||
降压药 | 250(74.6) | 51(71.8) | 99(75.4) | 0.312 | 0.577 |
质子泵抑制剂 | 200(59.7) | 45(63.4) | 154(58.3) | 0.616 | 0.433 |
eGFR: 估算肾小球滤过率;Hb: 血红蛋白;PLT: 血小板计数;MPV: 平均血小板体积;PDW: 血小板分布宽度;APTT: 活化部分凝血活酶时间;PT: 凝血酶原时间;TT: 凝血酶时间;INR: 国际标准化比值;NT-proBNP: 氨基末端脑钠肽前体;TC: 总胆固醇;LDL-C: 低密度脂蛋白胆固醇;HDL-C: 高密度脂蛋白胆固醇;MAADP: 二磷酸腺苷诱导的血小板-纤维蛋白凝块强度。 |
Pearson相关分析(表 2)显示:PLT与TC、LDL-C正相关(P<0.05);MAADP与TC、LDL-C正相关(P<0.001);HDL-C与血小板参数之间均不存在相关性。
血脂 | PLT | MPV | PDW | MAADP |
TC | ||||
r值 | 0.119 | ﹣0.032 | 0.023 | 0.256 |
P值 | 0.029 | 0.564 | 0.679 | <0.001 |
LDL-C | ||||
r值 | 0.120 | ﹣0.034 | 0.007 | 0.284 |
P值 | 0.028 | 0.534 | 0.905 | <0.001 |
HDL-C | ||||
r值 | ﹣0.027 | ﹣0.006 | ﹣0.008 | 0.074 |
P值 | 0.628 | 0.913 | 0.886 | 0.179 |
PLT:血小板计数;MPV:平均血小板体积;PDW:血小板分布宽度;MAADP:二磷酸腺苷诱导的血小板-纤维蛋白凝块强度;TC:总胆固醇;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇。 |
对HRPR组与non-HRPR两组间差异有统计学意义的指标及可能相关的变量进行logistic单因素分析,将单因素分析中P<0.01的变量纳入logistic逐步回归模型,结果(表 3)显示:年龄、PLT、LDL-C为HRPR的独立预测因素。
变量 | 单因素 | 多因素 | |||
OR (95%CI) | P值 | OR (95%CI) | P值 | ||
男性 | 1.994 (1.125~3.532) | 0.018 | |||
年龄 | 1.040 (1.015~1.065) | 0.002 | 1.045 (1.015~1.076) | 0.003 | |
BMI | 0.989 (0.838~1.168) | 0.899 | |||
吸烟 | 1.369 (0.841~2.230) | 0.207 | |||
高血压 | 1.568 (0.929~2.649) | 0.092 | |||
糖尿病 | 1.348 (0.804~2.261) | 0.257 | |||
PLT | 1.008 (1.003~1.013) | 0.001 | 1.008 (1.001~1.016) | 0.038 | |
MPV | 1.310 (1.028~1.669) | 0.029 | |||
PDW | 1.111 (1.002~1.233) | 0.046 | |||
TC | 1.622 (1.253~2.100) | <0.001 | |||
LDL-C | 2.116 (1.547~2.894) | <0.001 | 2.209 (1.591~3.066) | <0.001 | |
HDL-C | 0.897 (0.352~2.283) | 0.819 | |||
BMI:体质量指数;PLT: 血小板计数;MPV: 平均血小板体积;PDW: 血小板分布宽度;TC:总胆固醇;LDL-C:低密度脂蛋白胆固醇;HDL-C:高密度脂蛋白胆固醇。 |
1年随访期间,有45例(13.4%)患者发生MACE。335例患者中HRPR+高脂组41例、HRPR+低脂组30例、non-HRPR+高脂组67例、non-HRPR+低脂组197例。Kaplan-Meier生存曲线(图 1)和log-rank检验表明:4亚组间MACE发生率差异有统计学意义(P<0.000 1);HRPR+高脂组患者MACE发生率高于其他3亚组(P<0.05)。
![]() |
图 1 缺血性MACE事件发生的K-M生存曲线 HRPR+高脂组 vs HRPR+低脂组:HR=2.71,95%CI 1.29~5.69,P=0.014 7;HRPR+高脂组 vs non-HRPR+高脂组:HR=10.81,95%CI 4.69~24.94,P<0.000 1;HRPR+低脂组 vs non-HRPR+高脂组:HR=4.10,95%CI 1.13~14.90,P=0.0140;non-HRPR+低脂组 vs non-HRPR+高脂组:HR=1.08,95%CI 0.34~3.47,P=0.892 0。 |
血小板聚集在MACE发生中发挥重要作用,因此DAPT后残余血小板活性的检测非常重要[12]。氯吡格雷为噻吩吡啶类抗血小板药物,为前体药物,经体内细胞色素P450同工酶CYP3A4与CYP2C19作用转化为活性代谢物才能发挥作用[13]。与未携带功能缺失等位基因的患者相比,携带1个CYP2C19功能缺失等位基因的患者血浆内氯吡格雷的活性代谢产物浓度低,预后更差[14];CYP2C19等位基因缺失患者的血小板反应性也升高,且升高程度与携带功能缺失等位基因的数量正相关[15]。HRPR可能提示须延长DAPT治疗时间、增加氯吡格雷剂量或换用替格瑞洛[16-17]。
本研究发现高龄、LDL-C升高均影响血小板活性。以往的研究多未将血脂异常作为HRPR的临床危险因素进行分析,这可能与ACS患者常规使用他汀类药物有关。但是,他汀类药物的降脂速度并非迅速,且国内常规使用的阿托伐他汀(规格:20 mg)或瑞舒伐他汀(规格:10 mg)仅能使LDL-C下降40%[18]。而相关指南[19-20]认为,将ACS患者的LDL-C水平控制在低于1.4 mmol/L能较低于2.6 mmol/L进一步降低风险、逆转斑块,降低MACE的发生风险。高水平LDL-C是慢性炎症反应起始相关因子之一,通过诱导血小板活化,使其释放促炎细胞因子[21]。血小板可以通过NADPH氧化酶2使LDL颗粒氧化为氧化低密度脂蛋白(ox-LDL)[22],而oxLDL又通过CD36、LOX-1等受体增强血小板活性[23]。此外,本研究发现,DAPT治疗稳定后,HRPR且LDL-C≥2.6 mmol/L患者出院后1年内发生MACE的风险更高。因此,对于单用他汀无法达到LDL-C目标值的患者,应加用依折麦布和(或)PCSK9抑制剂[24]。
本研究存在一定的局限性:(1)为单中心观察性研究,纳入的样本量较小,未纳入使用阿司匹林+替格瑞洛的患者,且由于各中心DES材料及植入技术等存在差异,患者代表性可能受限;(2)未对患者进行基因检测,结果可能存在偏倚;(3)仅通过TEG进行血小板功能评估,且随访结束时未再次进行血小板功能评估。
综上所述,LDL-C水平与接受阿司匹林+氯吡格雷治疗的DES植入术后NSTE-ACS患者的血小板活化水平正相关;对于LDL-C升高合并HRPR的患者,可能需要更长期的抗血小板治疗与强效的降脂治疗。此外,本研究提示,对于该类患者,换用替格瑞洛可能有助于改善预后。但本研究结论尚须进一步的临床研究证明。
利益冲突:所有作者声明不存在利益冲突。
[1] |
YEUNG J, LI W J, HOLINSTAT M. Platelet signaling and disease: targeted therapy for thrombosis and other related diseases[J]. Pharmacol Rev, 2018, 70(3): 526-548.
[DOI]
|
[2] |
LEVINE G N, BATES E R, BITTL J A, et al. 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: a report of the American college of cardiology/American heart association task force on clinical practice guidelines: an update of the 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention, 2011 ACCF/AHA guideline for coronary artery bypass graft surgery, 2012 ACC/AHA/ACP/AATS/PCNA/SCAI/STS guideline for the diagnosis and management of patients with stable ischemic heart disease, 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction, 2014 AHA/ACC guideline for the management of patients with non-ST-elevation acute coronary syndromes, and 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery[J]. Circulation, 2016, 134(10): e123-e155.
|
[3] |
COLLET J P, THIELE H, BARBATO E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation[J]. Eur Heart J, 2021, 42(14): 1289-1367.
[DOI]
|
[4] |
BLIDEN K P, DICHIARA J, TANTRY U S, et al. Increased risk in patients with high platelet aggregation receiving chronic clopidogrel therapy undergoing percutaneous coronary intervention: is the current antiplatelet therapy adequate?[J]. J Am Coll Cardiol, 2007, 49(6): 657-666.
[DOI]
|
[5] |
LIBBY P, BORNFELDT K E, TALL A R. Atherosclerosis: successes, surprises, and future challenges[J]. Circ Res, 2016, 118(4): 531-534.
[DOI]
|
[6] |
AHOTUPA M. Oxidized lipoprotein lipids and atherosclerosis[J]. Free Radic Res, 2017, 51(4): 439-447.
[DOI]
|
[7] |
AHMADSEI M, LIEVENS D, WEBER C, et al. Immune-mediated and lipid-mediated platelet function in atherosclerosis[J]. Curr Opin Lipidol, 2015, 26(5): 438-448.
[DOI]
|
[8] |
KHODADI E. Platelet function in cardiovascular disease: activation of molecules and activation by molecules[J]. Cardiovasc Toxicol, 2020, 20(1): 1-10.
[DOI]
|
[9] |
CHAN L W, LUO X P, NI H C, et al. High levels of LDL-C combined with low levels of HDL-C further increase platelet activation in hypercholesterolemic patients[J]. Braz J Med Biol Res, 2015, 48(2): 167-173.
[DOI]
|
[10] |
BONELLO L, TANTRY U S, MARCUCCI R, et al. Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate[J]. J Am Coll Cardiol, 2010, 56(12): 919-933.
[DOI]
|
[11] |
ZHANG Y Y, PLETCHER M J, VITTINGHOFF E, et al. Association between cumulative low-density lipoprotein cholesterol exposure during young adulthood and middle age and risk of cardiovascular events[J]. JAMA Cardiol, 2021, 6(12): 1406-1413.
[DOI]
|
[12] |
CATTANEO M. Diagnosis and management of high platelet reactivity on treatment with clopidogrel[J]. Semin Thromb Hemost, 2012, 38(7): 645-651.
[DOI]
|
[13] |
PEREIRA N L, RIHAL C S, SO D Y F, et al. Clopidogrel pharmacogenetics[J]. Circ Cardiovasc Interv, 2019, 12(4): e007811.
[DOI]
|
[14] |
CUI G Z, ZHANG S Y, ZOU J, et al. P2Y12 receptor gene polymorphism and the risk of resistance to clopidogrel: a meta-analysis and review of the literature[J]. Adv Clin Exp Med, 2017, 26(2): 343-349.
[DOI]
|
[15] |
BERGMEIJER T O, RENY J L, PAKYZ R E, et al. Genome-wide and candidate gene approaches of clopidogrel efficacy using pharmacodynamic and clinical end points-rationale and design of the International Clopidogrel Pharmacogenomics Consortium (ICPC)[J]. Am Heart J, 2018, 198: 152-159.
[DOI]
|
[16] |
WATANABE H, DOMEI T, MORIMOTO T, et al. Effect of 1-month dual antiplatelet therapy followed by clopidogrel vs 12-month dual antiplatelet therapy on cardiovascular and bleeding events in patients receiving PCI: the STOPDAPT-2 randomized clinical trial[J]. JAMA, 2019, 321(24): 2414-2427.
[DOI]
|
[17] |
GIMBEL M, QADERDAN K, WILLEMSEN L, et al. Clopidogrel versus ticagrelor or prasugrel in patients aged 70 years or older with non-ST-elevation acute coronary syndrome (POPular AGE): the randomised, open-label, non-inferiority trial[J]. Lancet, 2020, 395(10233): 1374-1381.
[DOI]
|
[18] |
STRANDBERG T E. Role of statin therapy in primary prevention of cardiovascular disease in elderly patients[J]. CurrAtheroscler Rep, 2019, 21(8): 28.
|
[19] |
MICHOS E D, MCEVOY J W, BLUMENTHAL R S. Lipid management for the prevention of atherosclerotic cardiovascular disease[J]. N Engl J Med, 2019, 381(16): 1557-1567.
[DOI]
|
[20] |
JELLINGER P S, HANDELSMAN Y, ROSENBLIT P D, et al. American association of clinical endocrinologists and American college of endocrinology guidelines for management of dyslipidemia and prevention of cardiovascular disease[J]. Endocr Pract, 2017, 23(Suppl 2): 1-87.
|
[21] |
ASSINGER A, WANG Y, BUTLER L M, et al. Apolipoprotein B100 danger-associated signal 1 (ApoBDS-1) triggers platelet activation and boosts platelet-leukocyte proinflammatory responses[J]. Thromb Haemost, 2014, 112(2): 332-341.
|
[22] |
CARNEVALE R, BARTIMOCCIA S, NOCELLA C, et al. LDL oxidation by platelets propagates platelet activation via an oxidative stress-mediated mechanism[J]. Atherosclerosis, 2014, 237(1): 108-116.
[DOI]
|
[23] |
OBERMAYER G, AFONYUSHKIN T, BINDER C J. Oxidized low-density lipoprotein in inflammation-driven thrombosis[J]. J Thromb Haemost, 2018, 16(3): 418-428.
[DOI]
|
[24] |
CLAESSEN B E, GUEDENEY P, GIBSON C M, et al. Lipid management in patients presenting with acute coronary syndromes: areview[J]. J Am Heart Assoc, 2020, 9(24): e018897.
[DOI]
|