2. 复旦大学附属闵行医院消化内科,上海 201199;
3. 复旦大学附属中山医院实验研究中心,上海 200032;
4. 温州医科大学附属第一医院,温州 325000;
5. 复旦大学附属中山医院消化内科,上海 200032
2. Department of Gastroenterology, Minhang Hospital, Fudan University, Shanghai 201199, China;
3. Biomedical Research Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China;
4. The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China;
5. Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
肝癌是全球第6大癌种和第4大癌症相关死亡原因[1],发病率在全球范围内呈上升趋势[2-3]。肝细胞癌(hepatocellular carcinoma,HCC)作为肝癌的常见形式,约占肝癌发病总数的90%[4]。索拉非尼(sorafenib)、仑伐替尼(lenvatinib)及瑞戈非尼(regorafenib)是晚期HCC的标准治疗方法[5]。仑伐替尼作为一种多受体口服小分子酪氨酸激酶抑制剂(tyrosine kinase inhibitor,TKI),FDA于2018年8月正式批准其用于晚期HCC系统治疗,是继索拉非尼之后十多年来首次获批用于晚期HCC一线治疗的新药[4]。多项临床试验[4, 6]表明,仑伐替尼在未经治疗的晚期HCC患者中的疗效不劣于索拉非尼,可提供更长的总生存期(overall survival,OS)及无进展生存期(progression free survival,PFS)[7]。2021年,REFLECT研究(NCT01761266)发现,在临床健康相关生活质量获益层面仑伐替尼效果优于索拉非尼[8]。然而,在临床应用中研究人员逐渐发现仑伐替尼的原发性耐药或适应性耐药仍然存在,耐仑伐替尼的HCC细胞呈现出增殖及侵袭能力增强的特性[9],阻碍了晚期HCC的治疗[10-12]。因此,探讨仑伐替尼耐药的潜在机制具有一定的必要性,有助于新型治疗策略的制定。
1 仑伐替尼的作用机制 1.1 抑制肿瘤血管生成肿瘤血管生成为肿瘤细胞提供其生长及转移必须的营养物质及氧气,主要由血管内皮生长因子(vascular endothelial growth factor,VEGF)调节[13]。异常激活的成纤维细胞生长因子(fibroblast growth factor, FGF)信号也可促进肿瘤血管生成和进展,并直接促进细胞的增殖[14]。血管内皮生长因子受体(vascular endothelialgrowth factor receptor,VEGFR)及成纤维细胞生长因子受体(fibroblast growth factor receptor, FGFR)常在HCC细胞中高度表达,后者可能通过旁分泌或自分泌机制调节HCC细胞增殖[15-17]。
仑伐替尼作为一种多靶点TKI,对于VEGF通路和FGF通路具有较强的抑制活性[15, 18],可抑制VEGFR 1~3、FGFR 1~4。仑伐替尼相较于索拉非尼可更有效抑制VEGFR[19]及FGFR4[20],同时仑伐替尼可显著抑制FGFR1~4底物的磷酸化并降低细胞外调节蛋白激酶(ERK)1/2的磷酸化[18],实现更好的血管生成抑制效果。在部分索拉非尼耐药FGFR4表达的HCC细胞株中,仑伐替尼能够抑制FGFR4-ERK通路,克服索拉非尼耐药[21]。仑伐替尼同时可有效抑制血小板衍生生长因子受体α进一步抑制肿瘤血管生成。临床前研究[18, 22]表明,仑伐替尼有高效的抗血管生成活性,在HCC患者肿瘤的异种移植模型中可有效降低肿瘤微血管密度。
1.2 抑制RET信号通路原癌基因RET通过突变或染色体重排激活下游信号通路,促进肿瘤细胞增殖[23]。仑伐替尼经证实可在体外及体内阻断RET的磷酸化抑制细胞增殖[24],仑伐替尼通过抑制RET下游信号(RAS/MAPK、PI3K/AKT)在RET基因融合的HCC模型中表现出抗肿瘤活性[25]。
1.3 免疫调节活性仑伐替尼具有一定的免疫调节活性,在免疫功能正常的小鼠中表现出相较于索拉非尼更有效的抗肿瘤活性[26],可减少HCC肿瘤相关巨噬细胞的浸润并增加活化CD8+T细胞百分比[27],并通过抑制VEGFR进一步增加CD8+T细胞的活性[28]。此外,仑伐替尼可作为助剂增强肿瘤浸润自然杀伤细胞的激活来提高肿瘤免疫治疗的效果[29]。仑伐替尼与免疫检查点抑制剂(immune checkpoint inhibitors, ICIs)具有协同作用,仑伐替尼联合抗程序性细胞死亡受体1(programmed cell death-1, PD-1)抗体可通过干扰素信号通路显示出增强的抗肿瘤活性[27],显著减少肿瘤体积[26]。
2 仑伐替尼耐药机制的探索仑伐替尼作为一种治疗HCC的新兴一线疗法,可抑制肿瘤血管生成并调节肿瘤微环境免疫活性。然而,临床应用中仑伐替尼耐药情况的出现不可避免,因此,研究仑伐替尼耐药机制、探索仑伐替尼耐药的生物标志物成为近几年的研究热点[30]。
2.1 表皮生长因子受体(epidermal growth factor receptor,EGFR)激活基于大多数HCC细胞系对于仑伐替尼具有固有耐药的事实,一项基于CRISPR-Cas9基因筛选的研究[31]发现,耐药细胞株均呈现EGFR高水平表达。而抑制EGFR能有效逆转HCC细胞对于仑伐替尼的固有耐药。进一步的机制研究[32]发现,仑伐替尼对于FGFR的抑制导致EGFR-PAK2-ERK5信号轴的反馈激活进而产生耐药,EGFR抑制可阻断该信号轴实现耐药逆转。
2.2 FGFR1过表达FGFR1的过表达与晚期HCC进展相关[33],FGFR1高表达的HCC细胞对仑伐替尼存在抗性,过表达的FGFR1诱导HCC细胞中AKT/mTOR/ERK信号的激活导致仑伐替尼耐药,而下调FGFR1及其下游AKT/mTOR/ERK表达的抑制剂能恢复HCC细胞对仑伐替尼的敏感性[34]。因此,HCC细胞中FGFR1的过表达是仑伐替尼耐药的原因之一。
2.3 FGF19抑制HCC小鼠模型中,仑伐替尼选择性作用于表达FGF19的肿瘤,而FGF19的抑制会产生仑伐替尼抗性。长期暴露于仑伐替尼的HCC耐药细胞系呈现FGF19的下调。进一步蛋白质组及分泌组分析发现,血清唾液酸转移酶1作为FGF19正调控的肿瘤衍生分泌蛋白,其水平与肿瘤FGF19表达正相关[35]。因此,FGF19及唾液酸转移酶1低表达的HCC细胞呈现仑伐替尼耐药。
2.4 磷酸甘油酸脱氢酶(phosphoglycerate dehydrogenase, PHGDH)的表达PHGDH作为丝氨酸合成途径中的第一个限速酶,是仑伐替尼耐药性的关键性驱动因素。作为TKI家族的一员,仑伐替尼与索拉非尼及瑞戈非尼相似,TKI的应用会诱导HCC细胞丝氨酸合成途径中关键酶PHGDH、磷酸丝氨酸氨基转移酶1(phosphoserine aminotransferase 1, PSAT1)及磷酸丝氨酸磷酸酶(phosphoserine phosphatase, PSPH)表达上调,从而激活丝氨酸合成,导致仑伐替尼耐药。而PHGDH的功能抑制会提高活性氧水平并在TKI应用的条件下诱导HCC细胞凋亡,实现仑伐替尼耐药的逆转[36]。
2.5 线粒体自噬增强线粒体生物发生和线粒体自噬的失调对于维持致癌信号通路至关重要。线粒体内膜蛋白STOML2(stomatin-like protein 2)在HCC细胞中表达增加,其上调促进HCC细胞的增殖、迁移及侵袭并富集于自噬相关途径。仑伐替尼作用于HCC引起缺氧诱导因子1α上调并增加STOML2的表达。当STOML2下调时,HCC细胞对于仑伐替尼的敏感性提高。因此,线粒体自噬的激活为仑伐替尼耐药的可能原因之一[37]。
2.6 表达程序性细胞死亡配体1(programmed cell death ligand 1, PD-L1)的中性粒细胞增加肿瘤来源的乳酸通过MCT1/NF-κB/COX-2通路诱导中性粒细胞上PD-L1的表达,表达PD-L1的中性粒细胞可降低T细胞的细胞毒性。而仑伐替尼可诱导肿瘤微环境中CXCL2及CXCL5的分泌并增加中性粒细胞募集,进入肿瘤微环境后,中性粒细胞向N2表型极化,PD-L1的表达上调,导致仑伐替尼耐药[38]。
2.7 肝细胞生长因子(hepatocyte growth factor, HGF)/c-MET轴激活HGF可降低仑伐替尼对c-MET高表达HCC细胞的抗增殖、促凋亡和抗侵袭作用,但对c-MET低表达HCC细胞无显著影响。此外,HGF/c-MET激活下游PI3K/AKT和MAPK/ERK通路并促进HCC细胞中的上皮间质转化,进一步引起仑伐替尼耐药[10]。
2.8 肿瘤干细胞(cancer stem cell,CSC)耐药CSC模型已在包括HCC在内的各种实体瘤中得到验证[39]。CD44、CD133及CD73作为HCC中CSC的表面标志物,对于CSC自我更新、分化和新肿瘤的产生至关重要。CD44及CD133与HCC不良预后相关,研究[40]发现仑伐替尼、FGF2及FGF19通过抑制FGFR1~3信号转导以减少HCC中的CSC,而CD133阳性的细胞则呈现出更多的仑伐替尼耐药现象[41]。过表达CD73的HCC细胞对仑伐替尼具有显着的耐药性,且纯化的CD73+细胞与CD73-细胞相比表现出更高的耐药性[42]。
2.9 其他耐药原因基于不同分化程度HCC细胞株的研究[43]发现,仑伐替尼在p53突变及低线粒体呼吸的中分化(SNU423)至低分化(SNU449)的HCC细胞中疗效更好,而在高分化的细胞株(HepG2、Hep3B及Huh7)中效果较差,仑伐替尼在高分化的HCC类型中可能存在耐药情况。
长期暴露仑伐替尼的HCC耐药细胞株,与亲代细胞相比VEGFR2升高,下游RAS/MEK/ERK信号通路激活。进一步的研究[44]发现,ETS-1正向调节VEGFR2表达,而ETS-1的激活促进了FOX: ETS基序与VEGFR2的第一个内含子增强子结合,从而增强VEGFR2表达。敲除ETS-1可逆转仑伐替尼耐药细胞株的耐药性,因此ETS-1是导致VEGFR2介导的仑伐替尼耐药的原因[45]。
在代谢层面,肉碱缺失及其引起的异常三磷酸腺苷合成可能是仑伐替尼治疗期间疗效变差的原因[46],同时,支链氨基酸含量的维持对于仑伐替尼发挥作用也必不可少[47-48]。此外,Lnc-RNA MT1JP及抗凋亡蛋白BCL2L2在仑伐替尼耐药细胞中也被发现上调并抑制凋亡信号通路[49]。
3 治疗策略除研究耐药机制外,仑伐替尼临床耐药问题的另一个解决方案是寻找新治疗策略来克服或者改善耐药性,更好地实现仑伐替尼的精准医疗并避免患者不必要的治疗风险。
3.1 针对耐药机制的克服鉴于EGFR抑制可逆转HCC仑伐替尼固有耐药,仑伐替尼联合EGFR抑制剂吉非替尼(gefitinib)的一项临床试验(NCT04642547)证实了其临床意义,对于50% EGFR高表达的晚期HCC患者,该联合治疗可能成为一种有希望的治疗策略[32]。
针对仑伐替尼耐药细胞自噬增强的情况,体外实验[37]证实仑伐替尼与线粒体自噬抑制剂羟氯喹联合治疗(仑伐替尼5 mg/kg+羟氯喹50 mg/kg)的效果优于仑伐替尼高剂量(10 mg/kg)治疗。
肿瘤来源的乳酸通过MCT1/NF-κB/COX-2通路诱导中性粒细胞上PD-L1上调引起仑伐替尼耐药。因此,降低肿瘤微环境中的乳酸水平以及COX-2抑制剂联合仑伐替尼可能成为逆转耐药的可行方案[38]。
HCC中CSC存在并引起仑伐替尼耐药[42]。靶向CSC表面标志物CD73或消除CD73+细胞是逆转仑伐替尼耐药的策略。在CSC干性维持中,Hedgehog信号转导具有重要作用,Hedgehog信号抑制剂GANT61可抑制CD133及Hedgehog信号的上调,在体内及体外对于仑伐替尼耐药细胞株细胞活力及恶性特征具有良好的抑制作用[41]。特异性αⅤβ3拮抗剂西仑吉肽联合仑伐替尼可在POSTN(CSC干性基因)表达的HCC中逆转仑伐替尼的耐药[50]。同时靶向HCC中CSC的其他相关药物(如sulfarotene等)[51]是否能够有效逆转仑伐替尼耐药也值得进一步研究。
在其他耐药机制研究方面,因部分仑伐替尼耐药HCC存在HGF诱导的耐药情况,c-MET抑制剂PHA-665752可逆转此种形式的耐药[10]。靶向丝氨酸合成途径限速酶PHGDH的抑制剂NCT-503与仑伐替尼的联合应用也可成为克服仑伐替尼耐药的可行策略[36]。
3.2 ICIs的联合应用ICIs是当前免疫治疗的主流,仑伐替尼与ICIs的联合应用能够有效提高二者的作用效果[52],是一种有前景的HCC治疗策略。近年关于其联合机制的探索发现,仑伐替尼不仅可以抑制肿瘤血管生成,还可以增加免疫微环境中T淋巴细胞的浸润[53-54]。ICIs需要在T淋巴细胞浸润的条件下发挥作用,而仑伐替尼可以调节肿瘤免疫微环境,与抗PD-1抗体联合使用时可增强抗PD-1抗体的抗肿瘤活性[26-27]。同时,仑伐替尼可影响PD-L1的表达,实时荧光定量PCR结果表明,仑伐替尼组PD-L1的mRNA表达显着高于对照组[52],可产生更好的免疫抑制效果。
仑伐替尼联合PD-1抗体派姆单抗(pembrolizumab)在临床试验中显示出抗肿瘤能力,并有较好的安全性与耐受性[55]。2019年7月,FDA根据KEYNOTE-524研究(NCT03006926)结果首次宣布批准仑伐替尼与派姆单抗的联合疗法用于治疗HCC[55-56]。此后,仑伐替尼与派姆单抗联合作为一线治疗在100例不可切除的HCC患者中的Ⅰb期试验[55]表明,mRECIST的持久客观放射学反应为46%,中位PFS为9.5个月,中位OS为22个月,11%的患者肿瘤完全消失并达到完全缓解。在一项Ⅰ期试验[55]中,仑伐替尼联合派姆单抗疾病控制率为88%,优于贝伐单抗(抗血管生成抑制剂)与阿特珠单抗(抗PD-L1抗体)的组合(53%),并呈现出中位OS 22个月这一显著的效果。评估仑伐替尼与派姆单抗联合用药安全性和有效性的Ⅲ期多中心随机双盲LEAP-002试验(NCT0373593)也正在进行。新的研究(NCT03418922)[57]结果显示,仑伐替尼与纳武单抗(nivolumab)联合的治疗效果略优于仑伐替尼与派姆单抗的组合[12],这也为仑伐替尼与ICIs提供了新的可行方式。
3.3 与其他药物的联合应用基于仑伐替尼耐药HCC细胞中出现的FGFR1过表达情况,氧果芸香碱作为一种从轮状星瓢虫中提取的生物碱[58]可抑制过表达FGFR1的HCC细胞的增殖并诱导其凋亡,并进一步下调FGFR1表达及抑制AKT/mTOR/ERK信号通路使此类细胞对于仑伐替尼治疗敏感[34]。另一项关于苦豆种子中提取的天然生物活性碱——槐定碱的体内和体外研究[45]发现,槐定碱可以明显抑制仑伐替尼耐药HCC增殖并逆转其耐药性,二者均为仑伐替尼耐药情况的HCC治疗提供了可行方案。
在晚期HCC患者治疗的过程中,仑伐替尼常因副作用的产生而需要减少初始剂量,是否存在一种药物联合方式可弥补初始剂量的减少值得研究。2021年,一项研究[59]证实血管紧张素-Ⅱ受体阻滞剂氯沙坦与仑伐替尼联合在后者低剂量时增强了其细胞抑制和血管抑制作用,体内及体外实验均达到常规剂量的效果。因此,仑伐替尼与氯沙坦联合治疗可能成为患者仑伐替尼标准剂量不耐受的可行选择。
其余药物如Aurora A抑制剂alisertib[60]、核苷酸结合寡聚化结构域2(nucleotide binding oligomerization domain 2,NOD2)激活剂[61]均可增强仑伐替尼对于HCC治疗的敏感性。
3.4 药物递送方式小鼠HCC模型研究[62]发现,聚乳酸-乙醇酸(PLGA)-聚乙二醇(PEG)-氨乙基茴香酰胺(AEAA)纳米颗粒(NP)靶向共递送仑伐替尼可显著延长HCC晚期小鼠的存活时间。实现仑伐替尼的靶向递送可能有效改善仑伐替尼疗效。
3.5 联合放射治疗HCC皮下瘤小鼠模型中,仑伐替尼比索拉非尼更早、更有效地诱导血管正常化并改善HCC的瘤内微环境,这些变化增加了肿瘤的放射敏感性。仑伐替尼联合放射治疗有效抑制了肿瘤生长及瘤内血管生成,联合用药组比单用仑伐替尼组出现了更多的肿瘤坏死区域及Ki-67阳性细胞[63]。因此,联合放射治疗能够有效提高仑伐替尼治疗HCC的能力。
4 总结与展望仑伐替尼的一线临床应用对于晚期HCC患者而言无疑是一大福音。然而在临床应用中,仑伐替尼的耐药性也普遍存在,固有性耐药及获得性耐药均成为患者临床获益的一大阻碍。因此,探究仑伐替尼的耐药原因并给予针对性的措施无疑是实现晚期HCC患者进一步精准医疗的有效策略。
近3年来关于仑伐替尼在HCC中耐药机制的研究层出不穷:EGFR的激活,FGFR1的过表达,FGF19的抑制;氨基酸合成途径中PHGDH的表达;肿瘤线粒体自噬的增强;肿瘤微环境中中性粒细胞PD-L1表达的增加;HGF/c-MET轴激活以及HCC肿瘤干细胞的出现均为仑伐替尼固有性耐药或获得性耐药出现的原因。针对以上机制的靶向抑制剂/激活剂的体内与体外研究均发现其逆转仑伐替尼耐药的能力。因此,进一步探索仑伐替尼耐药的深层原因具有重要的基础研究与临床意义。
HCC仑伐替尼相关新治疗策略方面,除逆转仑伐替尼耐药的相关研究外,联合ICIs的临床试验探索有着令人欣喜的效果。仑伐替尼联合派姆单抗在临床预后方面呈现出优于贝伐单抗联合阿特珠单抗的结果。同时,仑伐替尼联合纳武单抗在初步的临床实践中更是表现出了优于与派姆单抗联合的效果。而与其他生物碱类药物及氯沙坦的联合应用也进一步提高了仑伐替尼的疗效甚至可逆转仑伐替尼的耐药。改变仑伐替尼的传统递送方式实现药物靶向释放及联合放射治疗均能有效提高仑伐替尼的作用效果。
然而,HCC中仑伐替尼耐药性的克服是一个漫长而充满挑战的过程,这也是几乎每一种药物都会面临的临床应用考验。如何实现仑伐替尼的精准应用,如何在仑伐替尼耐药出现时靶向逆转耐药,如何在应用仑伐替尼时进一步提高其作用效果,这是研究者所面临的问题。只有更好地解决这些问题,才能够更好地造福更多晚期HCC患者。
利益冲突:所有作者声明不存在利益冲突。
[1] |
International Agency for Research on Cancer. Cancer Today. 2020[EB/OL]. [2021-12-20]. https://gco.iarc.fr/today/online-analysis, 2020.
|
[2] |
LLOVET J M, ZUCMAN-ROSSI J, PIKARSKY E, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2016, 2: 16018.
[DOI]
|
[3] |
VILLANUEVA A. Hepatocellular carcinoma[J]. N Engl J Med, 2019, 380(15): 1450-1462.
[DOI]
|
[4] |
LLOVET J M, KELLEY R K, VILLANUEVA A, et al. Hepatocellular carcinoma[J]. Nat Rev Dis Primers, 2021, 7(1): 6.
[DOI]
|
[5] |
FORNER A, REIG M, BRUIX J. Hepatocellular carcinoma[J]. Lancet, 2018, 391(10127): 1301-1314.
[DOI]
|
[6] |
KUDO M, FINN R S, QIN S, et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: a randomised phase 3 non-inferiority trial[J]. Lancet, 2018, 391(10126): 1163-1173.
[DOI]
|
[7] |
KUDO M, UESHIMA K, CHAN S, et al. Lenvatinib as an initial treatment in patients with intermediate-stage hepatocellular carcinoma beyond up-to-seven criteria and child-pugh a liver function: a proof-of-concept study[J]. Cancers (Basel), 2019, 11(8): 1084.
[DOI]
|
[8] |
VOGEL A, QIN S, KUDO M, et al. Lenvatinib versus sorafenib for first-line treatment of unresectable hepatocellular carcinoma: patient-reported outcomes from a randomised, open-label, non-inferiority, phase 3 trial[J]. Lancet Gastroenterol Hepatol, 2021, 6(8): 649-658.
[DOI]
|
[9] |
AO J, CHIBA T, SHIBATA S, et al. Acquisition of mesenchymal-like phenotypes and overproduction of angiogenic factors in lenvatinib-resistant hepatocellular carcinoma cells[J]. Biochem Biophys Res Commun, 2021, 549: 171-178.
[DOI]
|
[10] |
FU R, JIANG S, LI J, et al. Activation of the HGF/c-MET axis promotes lenvatinib resistance in hepatocellular carcinoma cells with high c-MET expression[J]. Med Oncol, 2020, 37(4): 24.
[DOI]
|
[11] |
JI L, LIN Z, WAN Z, et al. MiR-486-3p mediates hepatocellular carcinoma sorafenib resistance by targeting FGFR4 and EGFR[J]. Cell Death Dis, 2020, 11(4): 250.
[DOI]
|
[12] |
AL -SALAMA Z T, SYED Y Y, SCOTT L J. Lenvatinib: a review in hepatocellular carcinoma[J]. Drugs, 2019, 79(6): 665-674.
[DOI]
|
[13] |
LEE S H, JEONG D, HAN Y S, et al. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis[J]. Ann Surg Treat Res, 2015, 89(1): 1-8.
[DOI]
|
[14] |
TURNER N, GROSE R. Fibroblast growth factor signalling: from development to cancer[J]. Nat Rev Cancer, 2010, 10(2): 116-129.
[DOI]
|
[15] |
ZHAO Y, ZHANG Y N, WANG K T, et al. Lenvatinib for hepatocellular carcinoma: from preclinical mechanisms to anti-cancer therapy[J]. Biochim Biophys Acta Rev Cancer, 2020, 1874(1): 188391.
[DOI]
|
[16] |
SANDHU D S, BAICHOO E, ROBERTS L R. Fibroblast growth factor signaling in liver carcinogenesis[J]. Hepatology, 2014, 59(3): 1166-1173.
[DOI]
|
[17] |
OGASAWARA S, YANO H, IEMURA A, et al. Expressions of basic fibroblast growth factor and its receptors and their relationship to proliferation of human hepatocellular carcinoma cell lines[J]. Hepatology, 1996, 24(1): 198-205.
[DOI]
|
[18] |
MATSUKI M, HOSHI T, YAMAMOTO Y, et al. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models[J]. Cancer Med, 2018, 7(6): 2641-2653.
[DOI]
|
[19] |
YAMAMOTO Y, MATSUI J, MATSUSHIMA T, et al. Lenvatinib, an angiogenesis inhibitor targeting VEGFR/FGFR, shows broad antitumor activity in human tumor xenograft models associated with microvessel density and pericyte coverage[J]. Vasc Cell, 2014, 6: 18.
[DOI]
|
[20] |
YAMAUCHI M, ONO A, ISHIKAWA A, et al. Tumor fibroblast growth factor receptor 4 level predicts the efficacy of lenvatinib in patients with advanced hepatocellular carcinoma[J]. Clin Transl Gastroenterol, 2020, 11(5): e00179.
[DOI]
|
[21] |
SHI T, IWAMA H, FUJITA K, et al. Evaluating the effect of lenvatinib on sorafenib-resistant hepatocellular carcinoma cells[J]. Int J Mol Sci, 2021, 22(23): 13071.
[DOI]
|
[22] |
OGASAWARA S, MIHARA Y, KONDO R, et al. Antiproliferative effect of lenvatinib on human liver cancer cell lines in vitro and in vivo[J]. Anticancer Res, 2019, 39(11): 5973-5982.
[DOI]
|
[23] |
ROMEI C, CIAMPI R, ELISEI R. A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma[J]. Nat Rev Endocrinol, 2016, 12(4): 192-202.
[DOI]
|
[24] |
TOHYAMA O, MATSUI J, KODAMA K, et al. Antitumor activity of lenvatinib (e7080): an angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models[J]. J Thyroid Res, 2014, 2014: 638747.
|
[25] |
OKAMOTO K, KODAMA K, TAKASE K, et al. Antitumor activities of the targeted multi-tyrosine kinase inhibitor lenvatinib (E7080) against RET gene fusion-driven tumor models[J]. Cancer Lett, 2013, 340(1): 97-103.
[DOI]
|
[26] |
KIMURA T, KATO Y, OZAWA Y, et al. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model[J]. Cancer Sci, 2018, 109(12): 3993-4002.
[DOI]
|
[27] |
KATO Y, TABATA K, KIMURA T, et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway[J]. PLoS One, 2019, 14(2): e0212513.
[DOI]
|
[28] |
VORON T, COLUSSI O, MARCHETEAU E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors[J]. J Exp Med, 2015, 212(2): 139-148.
[DOI]
|
[29] |
ZHANG Q, LIU H, WANG H, et al. Lenvatinib promotes antitumor immunity by enhancing the tumor infiltration and activation of NK cells[J]. Am J Cancer Res, 2019, 9(7): 1382-1395.
|
[30] |
CATALANO M, CASADEI-GARDINI A, VANNINI G, et al. Lenvatinib: established and promising drug for the treatment of advanced hepatocellular carcinoma[J]. Expert Rev Clin Pharmacol, 2021, 14(11): 1353-1365.
[DOI]
|
[31] |
HINDSON J. Lenvatinib plus EGFR inhibition for liver cancer[J]. Nat Rev Gastroenterol Hepatol, 2021, 18(10): 675.
|
[32] |
JIN H, SHI Y, LV Y, et al. EGFR activation limits the response of liver cancer to lenvatinib[J]. Nature, 2021, 595(7869): 730-734.
[DOI]
|
[33] |
JO J C, CHOI E K, SHIN J S, et al. Targeting FGFR pathway in human hepatocellular carcinoma: expressing pFGFR and pMET for antitumor activity[J]. Mol Cancer Ther, 2015, 14(11): 2613-2622.
[DOI]
|
[34] |
ZHAO Z, SONG J, ZHANG D, et al. Oxysophocarpine suppresses FGFR1-overexpressed hepatocellular carcinoma growth and sensitizes the therapeutic effect of lenvatinib[J]. Life Sci, 2021, 264: 118642.
[DOI]
|
[35] |
MYOJIN Y, KODAMA T, MAESAKA K, et al. ST6GAL1 is a novel serum biomarker for lenvatinib-susceptible FGF19-driven hepatocellular carcinoma[J]. Clin Cancer Res, 2021, 27(4): 1150-1161.
[DOI]
|
[36] |
WEI L, LEE D, LAW C T, et al. Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for sorafenib resistance in HCC[J]. Nat Commun, 2019, 10(1): 4681.
[DOI]
|
[37] |
ZHENG Y, HUANG C, LU L, et al. STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib[J]. J Hematol Oncol, 2021, 14(1): 16.
[DOI]
|
[38] |
DENG H, KAN A, LYU N, et al. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(6): e002305.
[DOI]
|
[39] |
CHEN C, ZHAO S, KARNAD A, et al. The biology and role of CD44 in cancer progression: therapeutic implications[J]. J Hematol Oncol, 2018, 11(1): 64.
[DOI]
|
[40] |
SHIGESAWA T, MAEHARA O, SUDA G, et al. Lenvatinib suppresses cancer stem-like cells in HCC by inhibiting FGFR1-3 signaling, but not FGFR4 signaling[J]. Carcinogenesis, 2021, 42(1): 58-69.
[DOI]
|
[41] |
HU Q, HU X, ZHANG L, et al. Targeting Hedgehog signalling in CD133-positive hepatocellular carcinoma: improving lenvatinib therapeutic efficiency[J]. Med Oncol, 2021, 38(4): 41.
[DOI]
|
[42] |
MA X L, HU B, TANG W G, et al. CD73 sustained cancer-stem-cell traits by promoting SOX9 expression and stability in hepatocellular carcinoma[J]. J Hematol Oncol, 2020, 13(1): 11.
[DOI]
|
[43] |
RODRÍGUEZ-HERNÁNDEZ M A, CHAPRESTO-GARZóN R, CADENAS M, et al. Differential effectiveness of tyrosine kinase inhibitors in 2D/3D culture according to cell differentiation, p53 status and mitochondrial respiration in liver cancer cells[J]. Cell Death Dis, 2020, 11(5): 339.
[DOI]
|
[44] |
SIMONS M, GORDON E, CLAESSON-WELSH L. Mechanisms and regulation of endothelial VEGF receptor signalling[J]. Nat Rev Mol Cell Biol, 2016, 17(10): 611-625.
|
[45] |
ZHAO Z, ZHANG D, WU F, et al. Sophoridine suppresses lenvatinib-resistant hepatocellular carcinoma growth by inhibiting RAS/MEK/ERK axis via decreasing VEGFR2 expression[J]. J Cell Mol Med, 2021, 25(1): 549-560.
[DOI]
|
[46] |
OKUBO H, ANDO H, ISHIZUKA K, et al. Carnitine insufficiency is associated with fatigue during lenvatinib treatment in patients with hepatocellular carcinoma[J]. PLoS One, 2020, 15(3): e0229772.
[DOI]
|
[47] |
SHIMOSE S, KOYA S, KAWAGUCHI T, et al. Impact of branched-chain amino acids and frailty on the management of lenvatinib-related fatigue in patients with hepatocellular carcinoma[J]. Clin Mol Hepatol, 2021, 27(4): 616-619.
[DOI]
|
[48] |
ESO Y, NAKANO S, MISHIMA M, et al. Branched-chain amino acid to tyrosine ratio is an essential pre-treatment factor for maintaining sufficient treatment intensity of lenvatinib in patients with hepatocellular carcinoma[J]. J Hepatobiliary Pancreat Sci, 2020, 27(12): 913-921.
[DOI]
|
[49] |
YU T, YU J, LU L, et al. MT1JP-mediated miR-24-3p/BCL2L2 axis promotes lenvatinib resistance in hepatocellular carcinoma cells by inhibiting apoptosis[J]. Cell Oncol (Dordr), 2021, 44(4): 821-834.
|
[50] |
CHEN G, WANG Y, ZHAO X, et al. A positive feedback loop between periostin and TGFβ1 induces and maintains the stemness of hepatocellular carcinoma cells via AP-2α activation[J]. J Exp Clin Cancer Res, 2021, 40(1): 218.
[DOI]
|
[51] |
QI F, QIN W, ZHANG Y, et al. Sulfarotene, a synthetic retinoid, overcomes stemness and sorafenib resistance of hepatocellular carcinoma via suppressing SOS2-RAS pathway[J]. J Exp Clin Cancer Res, 2021, 40(1): 280.
[DOI]
|
[52] |
HUANG A, YANG X R, CHUANG W Y, et al. Targeted therapy for hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 146.
[DOI]
|
[53] |
LLOVET J M, MONTAL R, SIA D, et al. Molecular therapies and precision medicine for hepatocellular carcinoma[J]. Nat Rev Clin Oncol, 2018, 15(10): 599-616.
[DOI]
|
[54] |
HUCHINSON L. Targeted therapies: Lenvatinib SELECTs survival benefit[J]. Nat Rev Endocrinol, 2017, 13(9): 500.
|
[55] |
FINN R S, IKEDA M, ZHU A X, et al. Phase Ⅰb study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma[J]. J Clin Oncol, 2020, 38(26): 2960-2970.
[DOI]
|
[56] |
IKEDA M, SUNG M, KUDO M, et al. A phase 1b trial of lenvatinib (LEN) plus pembrolizumab (PEM) in patients (pts) with unresectable hepatocellular carcinoma (uHCC)[J]. J Clin Oncol, 2018, 36(15 Suppl): 4076.
|
[57] |
ZHU A X, PARK J O, RYOO B Y, et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): a randomised, double-blind, multicentre, phase 3 trial[J]. Lancet Oncol, 2015, 16(7): 859-870.
[DOI]
|
[58] |
ZHAO P, CHANG R Y, LIU N, et al. Neuroprotective effect of oxysophocarpine by modulation of MAPK pathway in rat hippocampal neurons subject to oxygen-glucose deprivation and reperfusion[J]. Cell Mol Neurobiol, 2018, 38(2): 529-540.
[DOI]
|
[59] |
TAKAGI H, KAJI K, NISHIMURA N, et al. The angiotensin Ⅱ receptor blocker losartan sensitizes human liver cancer cells to lenvatinib-mediated cytostatic and angiostatic effects[J]. Cells, 2021, 10(3): 575.
[DOI]
|
[60] |
HAO J, PENG Q, WANG K, et al. Antitumor effect of lenvatinib combined with alisertib in hepatocellular carcinoma by targeting the DNA damage pathway[J]. Biomed Res Int, 2021, 2021: 6613439.
|
[61] |
MA X, QIU Y, SUN Y, et al. NOD2 inhibits tumorigenesis and increases chemosensitivity of hepatocellular carcinoma by targeting AMPK pathway[J]. Cell Death Dis, 2020, 11(3): 174.
[DOI]
|
[62] |
YU Z, GUO J, HU M, et al. Icaritin exacerbates mitophagy and synergizes with doxorubicin to induce immunogenic cell death in hepatocellular carcinoma[J]. ACS Nano, 2020, 14(4): 4816-4828.
[DOI]
|
[63] |
UNE N, TAKANO-KASUYA M, KITAMURA N, et al. The anti-angiogenic agent lenvatinib induces tumor vessel normalization and enhances radiosensitivity in hepatocellular tumors[J]. Med Oncol, 2021, 38(6): 60.
[DOI]
|